

ATLAS Minimum Bias Trigger Scintillator Upgrade for LHC RunII

Istituto Nazionale di Fisica Nucleare

IN

<u>A. Sidoti</u> Istituto Nazionale Fisica Nucleare – Sezione di Roma "La Sapienza"

on behalf of the ATLAS Collaboration

The International Conference on Instrumentation for Colliding Beam Physics (INSTR 2014)

February 24 — March 1, 2014 BINP, Novosibirsk, Russia

Outline

Minimum Bias Trigger Scintillators (MBTS) in Run I (2009-2013):

- Physics motivations
- Physics potential
- Performance
- •Upgrade for Run II (2015-):
 - Design
 - Construction

The ATLAS Detector

A long time ago in a galaxy far, far away....

Few years before LHC start up, ATLAS realized that a subdetector able to trigger on genuine low luminosity collision events would be crucial

Requirements:

- •Sensibility to single low momentum particles \rightarrow Calorimeter
- Trigger at Level 1 with high efficiency \rightarrow Inner Detector
- •Tight time and installation constraints could only allow for a simple detector which could be read out by existing electronics
- \rightarrow The solution: scintillators from JINR (polystyrene, same slabs as preshower and Muon Extension for CDF)
- Instrumentation and readout electronics from Tile Calorimeter

The ATLAS Detector

The ATLAS Subdetectors

From G. Wolshin EPL 95 61001 (2011)

Detector	η coverage	Detector	η coverage
ID (Pix + SCT)	η <2.5	BCM	η =4.2
ID (TRT)	η <2.0	LUCID	5.6< η <6.0
MBTS	2.08< η <3.75	ZDC	η >8.3
Calo: EMEC	2.5< η <3.2	ALFA(RP)	10.6< ŋ <13.5
Calo: FCal	3.1< η <4.9		

Signal path: from scintillators to Central Trigger Processor ATLAS Cavern (UX15)

MBTS

2009-11-23, 14:22 CET Run 140541, Event 171897

http://atlas.web.cern.ch/Atlas/public/EVTDISPLAY/events.html

Run I Physics Results Based on MBTS

Excerpt of RunI ATLAS Papers based on MBTS: Soft QCD Physics and Heavy Ion

Measurement of underlying event characteristics using charged particles in pp collisions at sqrt(s) = 900 GeV and 7 TeV with the ATLAS Detector,

Measurements of underlying-event properties using neutral and charged particles in pp collisions at 900 GeV and 7 TeV with the ATLAS detector at the LHC,

Charged particle multiplicities in pp interactions

Measurement of the Inelastic Proton-Proton Cross-Section at sqrt(s) = 7 TeV with the ATLAS Detector

•Rapidity gap cross sections measured with the ATLAS detector in pp collisions at sqrt(s) = 7 TeV

Measurement of inclusive jet and dijet production in pp collisions at sqrt(s) = 7 TeV using the ATLAS detector

Measurement of the centrality dependence of the charged particle pseudorapidity distribution in lead-lead collisions at sqrt(s_NN) = 2.76 TeV with the ATLAS detector
Observation of a Centrality-Dependent Dijet Asymmetry in Lead-Lead Collisions at sqrt(S(NN))= 2.76 TeV with the ATLAS Detector at the LHC
and more and more

Inelastic pp Cross Section Measurement

Asymmetric events:

 \rightarrow Measure R_s: ratio of **single sided** MBTS events wrt total

inelastic events

$$R_{ss} = \frac{N_{ss}}{N_{incl}}$$

 $R_{SS} = 10.02 \pm 0.03 (\text{stat})^{+0.1}_{-0.4} (\text{syst})\%$

From $\mathbf{R}_{\mathbf{ss}}$ Measurement $\rightarrow\,$ Extract $\mathbf{f}_{\mathbf{p}}$ ratio $~f_{D}=$

$$\frac{\sigma_{DD} + \sigma_{SD} + \sigma_{CD}}{\sigma_{L-1}}$$

 σ_{Inel}

$$\begin{aligned} nelastic pp Cross Section Measurement \\ \sigma_{inel} &= \frac{N - N_{bg}}{\epsilon \times A_{inel} \times \int \mathcal{L}dt} A_{inel} = A_{inel}^{ND} (1 - f_D) + \\ &+ f_D [A_{inel}^{SD} f_{SD} + A_{inel}^{DD} (1 - f_{SD} - f_{CD}) + A_{inel}^{CD} f_{CD}] \end{aligned}$$

 $\sigma_{inel} = 69.1 \pm 2.4(stat) \pm 6.9 (extr) mb$ o Nature Communications **2**, 463, (2011)

Constraints of the various models based on MBTS multiplicity

Run I Performance (900 GeV and 7 TeV Collisions)

MBTS Trigger efficiency as a function of track multiplicity – Start of LHC Run I (2010)

~1 Efficiency for small track multiplicities

Excellent charge collected Data-MC agreement (after MC Calibration)

ATLAS-CONF-2010-068 (7 TeV) ATLAS-CONF-2010-025 (900 GeV)

Extending to Heavy Ions Running

Different physics processes: PbPb collisions in 2011, pPb collisions in 2013

Different hardware settings (thresholds, PMT HV) ~30 fb⁻¹ of pp collisions until 2013 data taking → Still good single track performance

> ATLAS-CONF-2012-122 ATLAS-CONF-2013-104

Run I Performance

ATLAS-CONF-2013-104

Radiation Dose

Jan03 Base (24620) - Ionization Dose, Gy/Yr (TID)

In Run I MBTS accumulated ~0.21 x (0.5-2.0)x 10^4 Gy = [0.1~0.4] x 10^4 Gy

MBTS in Run II

Decided to keep the same Run I readout scheme → Instrument Tile crack scintillators → need to reduce number of channels used by MBTS

Instead of 16 x 2 channels use 12 x 2 channels.

Reduced granularity for outer disks (4 per side) → Coupling of optical fibers from adjacent scintillators Kept same granularity for inner disks (8 per side)

→ Maximum care to guarantee the same light yield than in RunI

MBTS in Run II

Decided to keep the same Run I readout scheme → Instrument Tile crack scintillators → need to reduce number of channels used by MBTS

Instead of 16 x 2 channels use 12 x 2 channels.

Reduced granularity for outer disks (4 per side) → Coupling of optical fibers from adjacent scintillators Kept same granularity for inner disks (8 per side)

 \rightarrow Maximum care to guarantee the same light yield than in RunI

Connection fibers Bicron BCF -98 (1mm) Slight geometry change in Run II (increase η coverage)

MBTS Run II Construction

MBTS side A already installed MBTS side C to be installed before May 2014 Upgraded system will join ATLAS common cosmics data taking in July 2014

MBTS Side A Installed!

MBTS Run I vs Run II

Light transmission checked with Sr90 source

Test scintillator and fibers moving the Sr source on the scintillator surface $_{23}$ \rightarrow precise relative map of light transmittance

MBTS Run I vs Run II

Inner MBTS scintillators

Run I:

Moderate R dependence on irradiated sample → Damage from radiation under control (or recover)

Relative check of light transmission

Cs Scans

Modifications from Run I

Reflections → causing large accidental rates From adapter boards for trigger signal impedance mismatch

Before the input impedance fix

Use Constant Fraction Discriminator

Large signal variations time walk fix

After the input impedance fix

Conclusions

MBTS upgrade for Run II is progressing well

 \rightarrow Crucial to trigger on "Soft QCD" physics events during first Run II LHC fills

 \rightarrow MBTS still useful for all low luminosity LHC fills

Damage from radiation seems under control

Adjustment of electronics to fix issues suffered during Run I operations

In the remaining part of 2014 (before LHC start up)

- \rightarrow optimization of PMT HV and thresholds
- \rightarrow Cosmic test stand
- \rightarrow Join ATLAS common cosmic data taking (from July 2014)

BackUp

The ATLAS Forward Detectors (LHC Run I)

The ATLAS Forward Detectors (LHC Run II)

Experimental Tools II: Rapidity Gaps

For ND events dN/d η (@P_T>100 MeV, $\sqrt{s}=7$ TeV)~6 $\rightarrow <\eta_j-\eta_k > ~0.15$ (cf G. Brandt talk) Larger η gaps are exponentially suppressed except for Diffractive events Measuring $\Delta \eta$ is a measurement of M $\Omega = \ln S/M_X = - \ln \xi$

Difficult measurement of $M_{x(r)} \rightarrow$ Produced particles escape undetected in the beam pipe

η acceptance is defined in the largest η range -4.9<η<4.9 → However max η gap determined by MBTS position (→ trigger) (Max Δη~8) Using ID+EM+HEC+FCAL Experimentally (detector) η rings (variable width 0.2, 0.4 according to η region): Active ring if:

• At least one track with P_{τ} >200 MeV (also P_{τ} threshold=400,600,800 MeV/c)

At least one calorimeter cell above noise threshold (η-dependent threshold, no noise in Tile) and E_τ cut (same as track)

Large Rapidity Gaps

 $\Delta \eta_{F}$ is defined as "largest η gap in the event" Large $\Delta \eta_{F}$ sample is composed by SD + DD Events

Measure differential cross section varying P_T thresholds and comparing different MC (PHOJET and Pythia 8)

 $\frac{d\sigma}{d\Delta\eta_F}$

32

Cross Section as a function of Mx

Vertical bars \rightarrow all uncertainty except luminosity

Single cross section measurements performed with detectors at different η

33

Reference: Eur. . Phys. J. C72 (2012) 1926, arXiv1201:2808

Trigger Efficiency 2009

Modifications from Run I

Reflections \rightarrow causing large accidental rates From adapter boards for trigger signal impedance mismatch

Before the input impedance fix

After the input impedance fix

Use Constant Fraction Discriminator Large signal variations time walk fix

Dose Received

36

Cs Scans for MBTS

Cs Scans for MBTS

Complete Signal

