Monte Carlo event generation of photon-photon collisions at colliders PHOTON2015

Ilkka Helenius in collaboration with Torbjörn Sjöstrand

Lund University Department of Astronomy and Theoretical Physics

18.6.2015

Outline

1 Motivation

2 Monte Carlo event generation

- Parton distribution functions
- Parton showers
- 3 Photon-photon collisions
 - Evolution equations for photons
 - Initial state radiation
 - Beam remnants
- 4 Summary & Outlook

Motivation

Goal

- Simulate photon-photon collisions with PYTHIA8 Monte Carlo Event Generator
- Why consider $\gamma + \gamma$ collisions?
 - Interesting on its own right
 - \blacktriangleright Background for the future $\mathrm{e}^+ + \mathrm{e}^-$ collisions
- $\gamma+\gamma$ collisions were included in <code>PYTHIA6</code> event generator
 - ► The PYTHIA6 model got quite complicated
 - New sets of photon PDFs since PYTHIA6
 - Lots of developments in the event generation in PYTHIA8
 - \Rightarrow New simpler and more robust implementation

Monte Carlo event generators

Goal: Simulate the whole event

Several components:

- 1 Hard process
- 2 Parton showers
- 3 Multiple interactions
- 4 Beam remnants
- 5 Hadronization

6 Decays

Hard process

Proton-proton collision:

Composite beams, interactions happens between the partons

Collinear Factorization

Factorize long and short distance physics:

$$\mathrm{d}\sigma^{p+p\to k+l} = \sum_{i,j} f_i(x_1, Q^2) \otimes f_j(x_2, Q^2) \otimes \mathrm{d}\hat{\sigma}^{i+j\to k+l}$$

- $\mathrm{d}\hat{\sigma}^{i+j \rightarrow k+l}$ calculated using perturbative QCD
- $\blacktriangleright~f_i(x,Q^2)$ non-perturbative but universal parton distribution functions

Parton distribution functions (PDFs)

DGLAP evolution

DGLAP equations give the scale dependence of PDFs

$$\frac{\partial f_i(x,Q^2)}{\partial \log Q^2} = \frac{\alpha_s(Q^2)}{2\pi} \sum_j \int_x^1 \frac{\mathrm{d}z}{z} P_{ij}(z) f_j(x/z,Q^2)$$

$$P_{qq}(z) = \frac{4}{3} \left[\frac{1+z^2}{(1-z)_+} + \frac{3}{2} \delta(1-z) \right]$$

$$P_{qg}(z) = \frac{4}{3} \left[\frac{1+(1-z)^2}{z} \right]$$

$$P_{gq}(z) = \frac{1}{2} \left[z^2 + (1-z)^2 \right]$$

$$P_{gq}(z) = \frac{1}{2} \left[z^2 + (1-z)^2 \right]$$

$$P_{gg}(z) = 6 \left[\frac{z}{(1-z)_+} + \frac{1-z}{z} + z(1-z) + \frac{11-\frac{2}{3}n_f}{12} \delta(1-z) \right]$$

Parton showers

The partons taking part to hard process can emit additional partons

- Before the interaction: Initial state radiation (ISR)
- After the interaction: Final state radiation (FSR)

Also the emitted partons can radiate additional partons $\Rightarrow\,$ Parton showers

Parton showers

Final state radiation

Probability for splittings from DGLAP evolution

$$\mathrm{d}\mathcal{P}_{a\to bc} = \frac{\mathrm{d}Q^2}{Q^2} \frac{\alpha_s}{2\pi} P_{a\to bc}(z) \,\mathrm{d}z$$

Initial state radiation

Splitting probability based on conditional probability

$$\mathrm{d}\mathcal{P}_{a\to bc} = \frac{\mathrm{d}f_b}{f_b} = \frac{\mathrm{d}Q^2}{Q^2} \frac{x'f_a(x',Q^2)}{xf_b(x,Q^2)} \frac{\alpha_s}{2\pi} P_{a\to bc}(z) \,\mathrm{d}z$$

where x' = x/z

Showers generated by evolving down the common evolution scale $p_{T\rm evo}^2$ from $p_{T\rm max}^2$ to $p_{T\rm min}^2$

- High-energy photons can fluctuate into a hadronic state with equal quantum numbers
- The hard interaction happens between the partons

► To simulate these collisions PDFs for photons are required

PDFs for photon

DGLAP equations for photons

• Additional term due to $\gamma
ightarrow q ar q$ splittings

$$\frac{\partial f_i^{\gamma}(x,Q^2)}{\partial \log(Q^2)} = \frac{\alpha_{\rm EM}}{2\pi} e_i^2 P_{i\gamma}(x) + \frac{\alpha_s(Q^2)}{2\pi} \sum_j \int_x^1 \frac{\mathrm{d}z}{z} P_{ij}(z) f_j(x/z,Q^2)$$

where $P_{i\gamma}(x) = 3(x^2 + (1-x)^2)$ for quarks, 0 for gluons

Solution has two components:

$$f_i^\gamma(x,Q^2) = f_i^{\gamma,\mathrm{pl}}(x,Q^2) + f_i^{\gamma,\mathrm{had}}(x,Q^2)$$

Hadron-like part need non-perturbative input which is fixed by data

$$f_i^{\gamma,\text{had}}(x, Q_0^2) = N_i x^{a_i} (1-x)^{b_i}$$

- Currenty we are using PDFs from CJKL analysis [PRD 68 014010 (2003)]
 - Provides a parametrization for the PDFs
 - Provides point-like and hadron-like parts separately

ISR with photon beams

Different DGLAP evolution

The splitting probability for ISR is modified

$$\mathrm{d}\mathcal{P}_{a\to bc} = \frac{\mathrm{d}Q^2}{Q^2} \frac{x' f_a^{\gamma}(x',Q^2)}{x f_b^{\gamma}(x,Q^2)} \frac{\alpha_s}{2\pi} P_{a\to bc}(z) \,\mathrm{d}z + \frac{\mathrm{d}Q^2}{Q^2} \frac{\alpha_{\mathrm{EM}}}{2\pi} \frac{e_b^2 P_{\gamma\to bc}(x)}{f_b^{\gamma}(x,Q^2)}$$

Possibility to end up to the original photon during the evolution

The FSR is not modified

ISR comparison

 The PDFs integrated over relevant region of x Number of particles produced below Q² from ISR algorithm

Backwards evolution should produce the same results as the PDF evolution

- Heavy quarks disappears at the mass thresholds
- CJKL analysis uses ACOT(χ) scheme to deal with heavy quarks
 - $\Rightarrow\,$ Some differences in scale evolution

$ACOT(\chi)$ scheme for heavy quarks

DIS kinematics

- ► Limit for heavy quark production $W^2 = Q^2 (x^{-1} 1) > (2m_H)^2$
- In ACOT(χ) scheme this is taken into account by rescaling

 $x \to \chi = x(1 + 4m_H^2/Q^2)$

▶ In CJKL the heavy quark PDFs are zero for $x>1/(1+\frac{4m_{H}^{2}}{Q^{2}})$

$\gamma+\gamma$ kinematics

• Heavy quark limit not related to Q^2 but $\sqrt{s} \Rightarrow$ Undo rescaling $x \rightarrow x/(1 + 4m_H^2/Q^2)$

Proton

- Three valence quarks
- Use PDFs to determine whether interacting quark is sea or valence
- Construct the beam remnants conserving momenta, color and valence content

Photon

- ► Two "valence" quarks, flavors can fluctuate
 - ► Valence quarks from hadron-like PDF component
 - \blacktriangleright Quarks from $\gamma \rightarrow q \bar{q}$ splittings
- Determine whether interacting parton valence
 - ▶ Yes: Beam remnant is the corresponding (anti-)quark
 - No: Sample the valence content according to PDFs
- ► If ISR ends up to the beam photon no need for remnants

Summary & Outlook

Summary

- Implement photon-photon collisions into PYTHIA8 event generator
- Current state
 - Included PDFs for photons to generate the hard process
 - Modified beam remnant handling without ISR
 - \blacktriangleright Modified the ISR algorithm to include the $\gamma \rightarrow q \bar{q}$ splittings

Outlook

- Modify the beam remnant handling with ISR
- Include possibility for multiple partonic interactions (MPI)
- Consider also virtual photons

Backup

Data for photon PDFs

 \blacktriangleright Photon structure functions can be measured in $\mathrm{e^-}{+}\mathrm{e^+}$ collisions

"Photon DIS"

- ► Other electron emits a virtual photon (γ*)
 - \Rightarrow This electron is measured
- Other electron is not detected as the scattering angle is small
 - $\Rightarrow \mbox{ Photon from this electron} \\ \mbox{ has small virtuality}$
- Also W_{γγ} need to be measured to construct kinematics
- Data available mainly from different LEP experiments (O(200) points)
- Precision and kinematic coverage more limited than for proton PDFs

Photon PDF fits

- Reasonable agreement between the data and the fits
- Some differences between different analyses
- Currently we are using CJKL analysis
 - Leading order analysis suitable for MC generators
 - Includes also LEP-II data
 - Provides the point-like and hadron-like components separately

Comparison to p+p collisions

► The slope of the cross section less steep ⇒ More high-p_T partons

ISR with photon beams

▶ The *x*-distribution for the specific kinematics

