Light-quark mesons in two-photon processes at Belle

Sadaharu Uehara (KEK) Belle Collaboration

PHOTON2015 Budker INP, Novosibirsk, June 15-19, 2015

Resonance production and quantum numbers

Resonance formation from two photon collisions

Q = 0, C = +,

for real-photon collisions

 $J^{P}=0^{+}, 0^{-}, 2^{+}, 2^{-}, 3^{+}, 4^{+}, 4^{-}, 5^{+} \dots$ (even)[±], (odd \neq 1)⁺

This talk:

Pseudoscalar-meson pair production: J^P=(even)⁺ only Vector-meson pair production $\eta' \pi^+ \pi^-$ production

Strict constraints for quantum numbers \rightarrow **Determination of J^P by PWA** Quasi-real photon case, "Zero-tag": γ^* can be interpreted as a real γ

 $\Gamma\gamma\gamma$: The cross section is proportional to the two-photon partial decay width of the resonance, useful information to explore meson's internal structure

Decay properties of the resonance Production of **isospin** *I*=0 (*f*₁ mesons) and *I*=1 (*a*₁ mesons) Searches/Discoveries of new resonances Form factors / Test of QCD (000)

KEKB Accelerator and Belle Detector

- Asymmetric e⁻ e⁺ collider 8 GeV e⁻ (HER) x 3.5 GeV e⁺ (LER)
 √s= around 10.58 GeV ⇔ Υ(4S)
 Beam crossing angle: 22mrad
- World-highest Luminosity L_{max}=2.1x10³⁴ cm⁻²s⁻¹

 \int Ldt ~ 1040 fb⁻¹ (Completed in Jun.2010)

High momentum/energy resolutions CDC+Solenoid, Csl Vertex measurement – Si strips Particle identification TOF, Aerogel, CDC-dE/dx, RPC for K_L/muon S.Uehara, PHOTON2015, June 2015

" $\gamma\gamma \rightarrow$ Pseudoscalar-meson pair" from Belle

10 papers for 6 processes

Process	Reference Belle	Int.Lum. (fb ⁻¹)	γγ c.m. Energy (GeV)	Light Mesons	QCD	Char- monia
$\pi^+\pi^-$	PLB 615, 39 (2005) PRD 75, 051101(R) (2007) J. Phys. Soc. Jpn. 76, 074102 (2007)	87.7 85.9 85.9	2.4 - 4.1 0.8 - 1.5 0.8 - 1.5	$\sqrt[]{}$	\checkmark	\checkmark
K^+K^-	EPJC 32, 323 (2003) PLB 615, 39 (2005)	67 87.7	1.4 - 2.4 2.4 - 4.1	\checkmark	\checkmark	\checkmark
$\pi^0\pi^0$	PRD 78, 052004 (2008) PRD 79, 052009 (2009)	95 223	0.6 - 4.0 0.6 - 4.0	$\sqrt[]{}$	\checkmark	\checkmark
$K^0_{\ S}K^0_{\ S}$	PLB 651, 15 (2007) PTEP 2013, 123C01 (2013)	397.1 972	2.4 - 4.0 1.05 - 4.0	\checkmark	$\sqrt{1}$	$\sqrt{1}$
$\eta\pi^0$	PRD 80, 032001 (2009)	223	0.84 - 4.0	\checkmark	\checkmark	
ηη	PRD 82, 114031 (2010)	393	1.1 – 3.8	\checkmark	\checkmark	\checkmark

Differential cross section $d\sigma/d \cos \theta^*$ for these processes are measured.

S.Uehara, PHOTON2015, June 2015 4

The six processes; in total ~20 peaks

Formalism of PWA for P-meson pair final-state processes

• We consider up to J=4 (for W < 3 GeV).

$$\frac{d\sigma}{d\Omega} = \left| SY_0^0 + D_0Y_2^0 + G_0Y_4^0 \right|^2 + \left| D_2Y_2^2 + G_2Y_4^2 \right|^2$$

• S, D_0, G_0, D_2, G_2 Partial-wave amplitudes for each wave J_{λ}

J = L = 0, 2, 4 (even only) with the helicity $\lambda = 0$ or 2 (to the $\gamma\gamma$ axis)

- Y_J^{λ} : spherical harmonics
- $|Y_j^{\lambda}|$ are NOT mutually independent, as we have no information for the azimuthal-angle direction.
- We cannot determine the partial waves model independently;
 We need parameterization based on a model including the W dependence of resonances and continuum components.
- Ancillary model-independent way: Hat amplitudes; $Y_J^m^2$ mutually independent

$$\frac{d\sigma}{d\Omega} = \hat{S}^2 \left| Y_0^0 \right|^2 + \hat{D}_0^2 \left| Y_2^0 \right|^2 + \hat{G}_0^2 \left| Y_4^0 \right|^2 + \hat{D}_2^2 \left| Y_2^2 \right|^2 + \hat{G}_2^2 \left| Y_4^2 \right|^2$$

Confirmations of $f_0(980)$ and $a_0(980)$ formations

Two-photon decay width of $f_0(980)$ and $a_0(980)$

 $f_2(1270)$ - $a_2(1320)$ interference in KK

Scalars in the 1.2 – 1.6 GeV region

- Hadron experiments report a wide $f_0(1370)$ and a narrow $f_0(1500)$.
- Some of previous two-photon measurements provide a hint of $f_0(1100-1400) \rightarrow \pi\pi$ under the huge peak of $f_2(1270)$
- Belle's $\pi^0 \pi^0$ measurement reports $f_0(1470)$. May be visible in the line shape.
 - → favorable to the narrow $f_0(1500)$, but also consistent with $f_0(1370)$.

f ₀ (1370) ^[j]	$I^G(J^{PC})=0$	$I^{G}(J^{PC}) = 0^{+}(0^{++})$			
Mass $m = 1200$ to 1500 MeV Full width $\Gamma = 200$ to 500 MeV					
f0(1370) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)			
ππ	seen	672			
$f_0(1500)^{[n]}$ $I^G(J^{PC}) = 0^+(0^{++})$					
Mass $m = 1505 \pm$ Full width $\Gamma = 109$	6 MeV (S = 1.3) 9 ± 7 MeV				
Mass $m = 1505 \pm$ Full width $\Gamma = 109$ $f_0(1500)$ DECAY MODES	6 MeV (S = 1.3) 0 ± 7 MeV Fraction (Γ_i/Γ)	р Scale factor (MeV/c)			

1.6 – 1.8 GeV: Mass region of the greatest difficulty

• $a_2(1700) \rightarrow \rho^0 \pi^0 \rightarrow \pi^+ \pi^- \pi^0$ is confirmed by previous two-photon measurements.

- $a_2(1700) \rightarrow \eta \pi^0$ seen in our data, but no definite parameters obtained.
- $f_2(1810) \rightarrow \eta \eta$ is confirmed in two-photon process.
- An unidentified structure around ~1.6 GeV is seen in $\pi^0\pi^0$. But, its correspondence to a single resonance of the mass is not sure.

1.4 ₩ (GeV)

 $f_0(1710)$ formation in $K^0_s K^0_s$

 $f_0(1710) \rightarrow K_s^0 K_s^0$ is confirmed in two-photon process.

PHOTON2015, June 2015

12

The 1.8 – 2.2 GeV region

- $f_2(1950) \rightarrow \pi^0 \pi^0$ shows a broad structure
- Similar structure exists in K⁺K⁻ (but, they can be different states)
- No peak in $\eta \pi^0$, $\eta \eta$ and $K^0_{\ S} K^0_{\ S}$ in this mass region

The 2.2 – 2.6 GeV region

- The very narrow f_J(2220) (was ξ(2220)) and a wide f₂(2300) are suggested.
 Do the both exist? Really narrow?
- Our $\pi^0\pi^0$ result does not need $f(\sim 2300)$; the high mass $f_2(1950)$ can explain the observed line shape.
- Surely something narrow(?) peaks are found in K⁺K⁻, K⁰_SK⁰_s and ηη.

An **ss** state or a glueball flavor insensible?

<i>f</i> ₂ (2300)	$I^{G}(J^{PC}) = 0^{+}(2^{+})$	+)
Mass $m = 2297$ Full width $\Gamma = 1$	7 ± 28 MeV 149 ± 40 MeV	
f ₂ (2300) DECAY MODES	Fraction (Γ _i /Γ)	p (MeV/c)
f2(2300) DECAY MODES $\phi \phi$	Fraction (Γ_i/Γ) seen	р (MeV/c) 529
f_{2} (2300) DECAY MODES φφ $K\overline{K}$	Fraction (Γ_i/Γ) seen seen	<i>p</i> (MeV/c) 529 1037
f_{2} (2300) DECAY MODES φφ $K\overline{K}$ γγ	Fraction (Γ_i/Γ) seen seen seen	p (MeV/c) 529 1037 1149

14

 $f_2(2200)$ - $f_0(2500)$ is the best solution (in all the J= 0, 2, 4 combinations)

- There can be an only wide state around 2240 MeV.
- Narrow appearances in previous measurements may be due to an interference effect and/or statistical fluctuation.
- A high-mass state at 2.5 GeV may be the heaviest light-quark scalar meson so far found.

" $\gamma\gamma \rightarrow$ Vector-meson pair" from Belle

Observation of New Resonant Structures in $\gamma\gamma \rightarrow \omega\phi$, $\phi\phi$, and $\omega\omega$

 $\gamma\gamma \rightarrow \eta'\pi^+\pi^-$

Production of light-quark mesons decaying to the **three pseudoscalar meson final** state. (The η_c production is also presented.)

Belle, PRD 86, 052002 (2012)

X(1835) is an exotic resonance candidate found in the radiative decay of J/ψ by BES. Is it gluon-rich, or $q\bar{q}$ -rich?

S.Uehard

Summary

- $\gamma\gamma \rightarrow$ pseudoscalar-meson pair have been measured in six different final states.
- The γγ-invariant-mass region, 0.6 2.6 GeV, is studied for lightmeson spectroscopy.
- We measure $\Gamma \gamma \gamma (\times BF)$ for various J^{PC}=(even)⁺⁺ meson states.
- We have confirmed:
 - $\gamma\gamma$ coupling of the scalar mesons $f_0(980)$, $a_0(980)$, $f_0(1710)$
 - f a interference in the K \overline{K} final states
 - Many clear resonant structures found in 1.6 2.6 GeV regions.
- Resonant signals in the 1.6 2.6GeV region are also found in the VV and $\eta' \pi \pi$ final states.

Backup

History of integrated luminosity at Belle

Formalism of PWA for P-meson pair final-state processes

• We consider up to J=4 (for W < 3 GeV).

$$\frac{d\sigma}{d\Omega} = \left| SY_0^0 + D_0Y_2^0 + G_0Y_4^0 \right|^2 + \left| D_2Y_2^2 + G_2Y_4^2 \right|^2$$

- S, D_0 , G_0 , D_2 , G_2 Partial-wave amplitudes for each wave J_λ
 - J = L = 0, 2, 4 (even only) with the helicity $\lambda = 0$ or 2 (to the $\gamma\gamma$ axis)
 - Y_J^{λ} : spherical harmonics
 - $|Y_j^{\lambda}|$ are NOT mutually independent, as we have no information for the azimuthal-angle direction.
- We cannot determine the partial waves model independently;
 We need parameterization based on a model including the W dependence of resonances and continuum components.

Nature of *I*=0 and *I*=1 interference in KK

- Consider both isospin I=0 and I=1, e.g., f_J and a_J
- Their Constructive and Destructive interference based on OZI (Okubo-Zweiglizuka) rule and isospin I_z inversion.
 D. Faiman, H.J. Lipkin and H.R. Rubinstein, PL 59B,269 (1975)

Size of the cross sections for K^+K^- and $K^0\overline{K^0}$

A single resonance production of **f** or **a** decaying with the strong interaction

→ The cross sections are **similar size**.

If they are very different ightarrow

Interference between *I*=0 and *I*=1 resonances, or effective (electromagnetic) continuum production

The difference above >~2.4GeV is explained by electric-charge difference of the quarks.

The tensor-meson triplet, $f_2(1270)$, $a_2(1320)$, $f_2'(1525)$

The *I*=1 sector

- We find $a_0(1320) \rightarrow \eta \pi^0$ just under $a_2(1320)$.
- The mass is not compatible with $a_0(1450)$?

J=2 and J=4 components in $\pi^0\pi^0$

0000

Fit to $\pi^0 \pi^0$ (W = 1.7 – 2.5 GeV)

Parameter	$f_4(2050)$	" $f_2(1950)$ "	Unit
$\begin{array}{l} \text{Mass} \\ \Gamma_{\text{tot}} \\ \Gamma_{\gamma\gamma} \mathcal{B}(\pi^0 \pi^0) \end{array}$	$\begin{array}{r} 1885^{+14}_{-13} \begin{array}{c} +218 \\ -25 \end{array} \\ 453 \begin{array}{c} \pm 20 \end{array} \\ 7.7^{+1.2}_{-1.1} \end{array} \\ \begin{array}{c} +23.5 \end{array} \\ 7.5 \end{array}$	$\begin{array}{r} 2038^{+13}_{-11}{}^{+12}_{-73} \\ 441^{+27}_{-25}{}^{+28}_{-192} \\ 54^{+23}_{-14}{}^{+379}_{-14} \end{array}$	MeV/c ² MeV eV
$\chi^2(ndf)$	323.2 (311)		

Ks Ks vertex distances

Systematic errors

9	II (07)	From correlation study
Source	Uncertainty(%)	of different Exp# settings
Tracking efficiency (for 4 tracks)	2	of different Expir settings
Beam background effect	1	in data and signal MC
Pion identification (for 4 tracks)	2	
Non-exclusive and four-pion backgrounds	2 - 19 <	_A Half of the subtraction
Geometrical coverage and fit uncertainty	4	+ 2% from pt-fit (quad.sum)
$K^0_S K \pi$ background subtraction	1-2	-Loose-cut sample
K_S^0 -pair reconstruction	5-3	Loose-cut sample
Trigger efficiency	$5-7 \leftarrow C$	orrelation of the two triggers
$E_{\rm ECL}$ cut	1	orrelation of the two triggers
Integrated luminosity and luminosity function	5-4	
L4 efficiency	$1 - 10 \leftarrow A$	About 10% of the inefficiency
Total	9-25, typically 10	

Fitting the region W > 2 GeV

• Parameterization

$$i - wave = B.W.e^{i\phi_i} + B$$

 $\boldsymbol{B}_i = \boldsymbol{b}_i \left(\frac{W}{W0}\right)^{-c_i} \boldsymbol{e}^{i\boldsymbol{\phi}_i}$

(assume power behavior

for non-resonant background:

$$i = S, D_0, D_2 \text{ and } G_2; \text{ (we assume } G_0=0\text{))}$$

B.W.= $f_J(2200)$ and/or $f_J(2500)$ with J=0, 2 and 4

• Then fit $d\sigma/d\Omega$ (typically 16 free parameters)

Fit results for 13 assumptions

		*	
Assumption	No. of sol.	χ^2	ndf
f_0-f_0	2	293.3, 293.9	214
f_0 - f_2	4	$320.9,\ 321.9,\ 324.5,\ 327.6$	214
f_0 - f_4	1	291.4	214
$f_2 - f_0$	1	228.3	214
f_2 - f_2	1	260.4	214
f_2 - f_4	1	323.6, 306.7	214
f_4 - f_0	1	411.6	214
f_4 - f_2	2	468.6, 472.1	214
f_4 - f_4	4	$459.6,\ 464.1,\ 466.4,\ 467.5$	214
Only- f_0	1	390.0	218
Only- f_2	1	323.6	218
Only- f_4	1	518.7	218
No resonances	1	659.32	222

S.Uehara, PHOTON2015, June 2015

Charmonia χ_{c0} and χ_{c2}

W-dependences at high energies

π^0 Transition Form Factor

 $\gamma\gamma * \rightarrow \pi^0$

Coupling of neutral pion with two photons Good test for QCD at high Q^2

Single-tag π^0 production in two-photon process with a large- Q^2 and a small- Q^2 photon

Theoretically calculated from pion distribution amplitude and decay constant $F(Q^{2}) = \frac{\sqrt{2}f_{\pi}}{3} \int T_{H}(x,Q^{2},\mu)\phi_{\pi}(x,\mu)dx$

Measurement:

 $|F(Q^2)|^2 = |F(Q^2,0)|^2 = (d\sigma/dQ^2)/(2A(Q^2))$ A(Q²) is calculated by QED $|F(0,0)|^2 = 64\pi\Gamma_{\gamma\gamma}/\{(4\pi\alpha)^2 m_R^3\}$

Detects e (tag side) and π^0

 $Q^2 = 2EE'(1 - \cos \theta)$ from energy and polar angle of the tagged electron

Comparisons with Previous Measurements and Fits

No rapid growth above $Q^2>9GeV^2$ is seen in Belle result. ~ 2.3 σ difference between Belle and

BaBar in $9 - 20 \text{ GeV}^2$

Fit A (suggested by BaBar) $Q^2 |F(Q^2)| = A (Q^2/10 \text{GeV}^2)^{\beta}$ BaBar: ---- $A = 0.182 \pm 0.002 (\pm 0.004) \text{ GeV}$ $\beta = 0.25 \pm 0.02$ Belle: ---- $A = 0.169 \pm 0.006 \text{ GeV}$ $\beta = 0.18 \pm 0.05$ $\chi^2/\text{ndf} = 6.90/13$ ~1.5 σ difference from BaBar

Fit B (with an asymptotic parameter) $Q^2|F(Q^2)| = BQ^2/(Q^2+C)$ Belle: $B = 0.209 \pm 0.016 \text{ GeV}$ $C = 2.2 \pm 0.8 \text{ GeV}^2$ $\chi^2/\text{ndf} = 7.07/13$ B is consistent with the QCD value (0.185GeV)