Meson Spectroscopy at COMPASS

Boris Grube

Physik-Department E18 Technische Universität München, Garching, Germany

PHOTON 2015 Novosibirsk, 18. June 2015

Outline

- 2 Meson production at COMPASS
- 3 $J^{PC} = 1^{-+}$ spin-exotic signal
- A new narrow axial-vector resonance

Mesons in the Constituent Quark Model (CQM)

Mesons

• Color-singlet $|q\bar{q}'\rangle$ states, grouped into SU(3)_{flavor} multiplets

Spin-parity rules for bound $q\bar{q}$ system

- Quark spins couple to total intrinsic spin *S* = 0 or 1
- Orbital angular Momentum \vec{L} and total spin \vec{S} couple to meson spin $\vec{l} = \vec{L} + \vec{S}$
- Parity $P = (-1)^{L^2}$
- Charge conjugation $C = (-1)^{L+S}$
- Forbidden J^{PC}: 0⁻⁻, even⁺⁻, odd⁻⁺

Mesons in the Constituent Quark Model (CQM)

Mesons

• Color-singlet $|q\bar{q}'\rangle$ states, grouped into SU(3)_{flavor} multiplets

Spin-parity rules for bound $q\bar{q}$ system

- Quark spins couple to total intrinsic spin *S* = 0 or 1
- Orbital angular Momentum \vec{L} and total spin \vec{S} couple to meson spin $\vec{l} = \vec{L} + \vec{S}$
- Parity $P = (-1)^{L+1}$
- Charge conjugation $C = (-1)^{L+S}$
- Forbidden J^{PC}: 0⁻⁻, even⁺⁻, odd⁻⁺

Mesons in the Constituent Quark Model (CQM)

Mesons

• Color-singlet $|q\bar{q}'\rangle$ states, grouped into SU(3)_{flavor} multiplets

Spin-parity rules for bound $q\bar{q}$ system

- Quark spins couple to total intrinsic spin *S* = 0 or 1
- Orbital angular Momentum \vec{L} and total spin \vec{S} couple to meson spin $\vec{l} = \vec{L} + \vec{S}$
- Parity $P = (-1)^{L+1}$
- Charge conjugation $C = (-1)^{L+S}$
- Forbidden J^{PC} : 0⁻⁻, even⁺⁻, odd⁻⁺

Hybrids $|q\bar{q}g\rangle$: states with **excited gluonic fields**

Glue component contributes to quantum numbers
 All J^{PC} allowed

• Lightest predicted hybrid: spin-exotic $J^{PC} = 1^{-+}$

Glueballs $|gg\rangle$: states with **no valence quarks**

- Lightest predicted glueball: ordinary $J^{PC} = 0^{++}$
 - Will strongly mix with nearby conventional $J^{PC} = 0^{++}$ states

Multi-quark states

- Tetraquarks $|qq \bar{q}\bar{q}\rangle$: compact
- Molecules $|q\bar{q} q\bar{q}\rangle$: extended

Physical states defined by quantum numbers

Hybrids $|q\bar{q}g\rangle$: states with **excited gluonic fields**

- Glue component contributes to quantum numbers
 All J^{PC} allowed
- Lightest predicted hybrid: spin-exotic $J^{PC} = 1^{-+}$

9 8 **q**'

Glueballs $|gg\rangle$: states with **no valence quarks**

- Lightest predicted glueball: ordinary $J^{PC} = 0^{++}$
 - Will strongly mix with nearby conventional $I^{PC} = 0^{++}$ states

Multi-quark states

- Tetraquarks $|qq \bar{q}\bar{q}\rangle$: compact
- Molecules $|q\bar{q} q\bar{q}\rangle$: extended

Physical states defined by quantum numbers

Hybrids $|q\bar{q}g\rangle$: states with **excited gluonic fields**

- Glue component contributes to quantum numbers
 All J^{PC} allowed
- Lightest predicted hybrid: spin-exotic $J^{PC} = 1^{-+}$

9 8 7'

Glueballs $|gg\rangle$: states with **no valence quarks**

- Lightest predicted glueball: ordinary $J^{PC} = 0^{++}$
 - Will strongly mix with nearby conventional $I^{PC} = 0^{++}$ states

Multi-quark states

- Tetraquarks $|qq \bar{q}\bar{q}\rangle$: compact
- Molecules $|q\bar{q} q\bar{q}\rangle$: extended

Physical states defined by quantum numbers

- Glue component contributes to quantum numbers
 All J^{PC} allowed
- Lightest predicted hybrid: spin-exotic $J^{PC} = 1^{-+}$

9 8 Ţ

Glueballs $|gg\rangle$: states with **no valence quarks**

- Lightest predicted glueball: ordinary $J^{PC} = 0^{++}$
 - Will strongly mix with nearby conventional $I^{PC} = 0^{++}$ states

Multi-quark states

- Tetraquarks $|qq \bar{q}\bar{q}\rangle$: compact
- Molecules $|q\bar{q} q\bar{q}\rangle$: extended

Physical states defined by quantum numbers

 $\pi^{-}\pi^{+}\pi^{-}$ Production with 190 GeV/c π^{-} Beam at COMPASS

- Soft scattering of beam particle off target via strong interaction
 - Small momentum and energy transfer to target
 - Target particle stays intact
- Beam particle gets excited into intermediate resonance *X*
- Decay of X into 3 forward-going pions
 - Measured by spectrometer
- Same final state \implies interference of different X
- 50 · 10⁶ π⁻π⁺π⁻ events
 3.5 · 10⁶ π⁻π⁰π⁰ events

 $\pi^{-}\pi^{+}\pi^{-}$ Production with 190 GeV/c π^{-} Beam at COMPASS

- Soft scattering of beam particle off target via strong interaction
 - Small momentum and energy transfer to target
 - Target particle stays intact
- Beam particle gets excited into intermediate resonance X
- Decay of X into 3 forward-going pions
 - Measured by spectrometer
- Same final state \implies interference of different *X*
- $50 \cdot 10^6 \ \pi^- \pi^+ \pi^-$ events • $3.5 \cdot 10^6 \ \pi^- \pi^0 \pi^0$ events

 $\pi^{-}\pi^{+}\pi^{-}$ Production with 190 GeV/c π^{-} Beam at COMPASS

- Soft scattering of beam particle off target via strong interaction
 - Small momentum and energy transfer to target
 - Target particle stays intact
- Beam particle gets excited into intermediate resonance X
- Decay of X into 3 forward-going pions
 - Measured by spectrometer
- Same final state \implies interference of different *X*
- $50 \cdot 10^6 \ \pi^- \pi^+ \pi^-$ events
- $3.5 \cdot 10^6 \ \pi^- \pi^0 \pi^0$ events

 $\pi^{-}\pi^{+}\pi^{-}$ Production with 190 GeV/c π^{-} Beam at COMPASS

Model assumption: X⁻ decays via $\pi^+\pi^-$ resonance \implies **"isobar"**

 $\pi^{-}\pi^{+}\pi^{-}$ Production with 190 GeV/c π^{-} Beam at COMPASS

Model assumption: X^- decays via $\pi^+\pi^-$ resonance \implies **"isobar"**

 $\pi^{-}\pi^{+}\pi^{-}$ Production with 190 GeV/c π^{-} Beam at COMPASS

Model assumption: X^- decays via $\pi^+\pi^-$ resonance \implies **"isobar"**

 $\pi^{-}\pi^{+}\pi^{-}$ Production with 190 GeV/c π^{-} Beam at COMPASS

Model assumption: X⁻ decays via $\pi^+\pi^-$ resonance \implies "isobar"

Phase Information

Peters, arxiv:hep-ph/0412069

- "Phase motion": δ rises from 0 to π and is $\pi/2$ at peak position
 - Analogous to mechanical oscillator

PWA of $\pi^- p \rightarrow (3\pi)^- p_{\text{recoil}}$ at COMPASS Spin-Exotic Signal with I = 1 and $J^{PC} = 1^{-+}$ in $\rho(770)\pi$ Decay Channel

- Four-momentum transfer t' between 0.1 and 1.0 (GeV/c)²
- Largest model used up to now: 88 waves
- Broad intensity bump
- Similar in both channels

 $\pi^-\pi^0\pi^0$ $\pi^-\pi^+\pi^-$ scaled

PWA of $\pi^- p \rightarrow (3\pi)^- p_{\text{recoil}}$ at COMPASS Spin-Exotic Signal with I = 1 and $J^{PC} = 1^{-+}$ in $\rho(770)\pi$ Decay Channel

- Four-momentum transfer t' between 0.1 and 1.0 (GeV/c)²
- Largest model used up to now: 88 waves
- Broad intensity bump
- Similar in both channels

 $\pi^- \pi^0 \pi^0$ $\pi^- \pi^+ \pi^-$ scaled

PWA of $\pi^- p \to (3\pi)^- p_{\rm recoil}$ at COMPASS Analysis in t' Bins

- Strong modulation of mass spectra with t'
- Dominant non-resonant contribution
 - Needs to be understood in order to extract resonances

PWA of
$$\pi^- p
ightarrow (3\pi)^- p_{
m recoil}$$
 at COMPASS

Model for Non-Resonant Component

PWA of $\pi^- p ightarrow (3\pi)^- p_{ m recoil}$ at COMPASS

Deck-Model for Non-Resonant Component

- Deck MC scaled to *t*'-summed intensity
- Include amplitude in PWA?

PWA of $\pi^- p \rightarrow (3\pi)^- p_{\text{recoil}}$ at COMPASS Unexpected I = 1 Signal with $J^{PC} = 1^{++}$ in $f_0(980)\pi$ Decay Channel

PWA of $\pi^- p ightarrow \pi^- \pi^+ \pi^- p_{\text{recoil}}$ at COMPASS

[arXiv:1501.05732]

- Consistent with Breit-Wigner resonance
- $a_1(1420)$: $M_0 = 1414^{+15}_{-13} \text{ MeV}/c^2$ $\Gamma_0 = 153^{+8}_{-23} \text{ MeV}/c^2$

PWA of $\pi^- p ightarrow \pi^- \pi^+ \pi^- p_{ m recoil}$ at COMPASS

[arXiv:1501.05732]

 $m_{3\pi}$ [GeV/c²]

PWA of $\pi^- p ightarrow \pi^- \pi^+ \pi^- p_{\text{recoil}}$ at COMPASS

[arXiv:1501.05732]

 $m_{3\pi}$ [GeV/c²]

PWA of $\pi^- p ightarrow \pi^- \pi^+ \pi^- p_{ m recoil}$ at COMPASS

Nature of $a_1(1420)$ unclear

- No quark-model states expected at $1.4 \,\text{GeV}/c^2$
- Ground state $a_1(1260)$ very close and wider
- Seen only in $f_0(980)\pi$ decay mode
- Isospin partner of narrow $f_1(1420)$?
- Suspiciously close to $K\overline{K}^*$ threshold

PWA of $\pi^- p ightarrow \pi^- \pi^+ \pi^- p_{\sf recoil}$ at COMPASS

Several proposed explanations

• Two-quark-tetraquark mixed state

[Wang, arXiv:1401.1134]

• Tetraquark with mixed flavor symmetry

[Chen et al., Phys. Rev. D91 (2015) 094022]

• Resonant re-scattering corrections in Deck process

[Basdevant and Berger, Phys. Rev. Lett. 114 (2015) 192001 and arXiv:1501.04643]

Branching point in triangle diagram

[Mikhasenko et al., Phys. Rev. **D91** (2015) 094015]

PWA of $\pi^- p ightarrow \pi^- \pi^+ \pi^- p_{ m recoil}$ at COMPASS

[arXiv:1501.05732]

 π^{-}

Several proposed explanations

• Two-quark-tetraquark mixed state

[Wang, arXiv:1401.1134]

• Tetraquark with mixed flavor symmetry

[Chen et al., Phys. Rev. D91 (2015) 094022]

Resonant re-scattering corrections in Deck process

[Basdevant and Berger, Phys. Rev. Lett. 114 (2015) 192001 and arXiv:1501.04643]

• Branching point in triangle diagram

[Mikhasenko et al., Phys. Rev. D91 (2015) 094015]

World's largest $\pi^-\pi^+\pi^-$ data set

- Crosscheck systematics with $\pi^-\pi^0\pi^0$ data
- Novel analysis scheme: binning in t'
 - Better separation of resonant and non-resonant contribution
- Significant intensity in $J^{PC} = 1^{-+}$ spin-exotic wave
 - Resonance interpretation work in progress
- New axial-vector state $a_1(1420)$
 - Surprising find
 - Peculiar properties

• Extraction of resonance parameters limited by understanding of non-resonant contribution

• Improved models needed

- Pion diffraction into $\pi^-\eta$, $\pi^-\eta'$, $\pi^-\eta\eta$, $\pi^-\pi^0\omega$, $K\bar{K}\pi$, $K\bar{K}\pi\pi$, ...
- Kaon diffraction into $K^-\pi^+\pi$
- Central-production reactions

World's largest $\pi^-\pi^+\pi^-$ data set

- Crosscheck systematics with $\pi^-\pi^0\pi^0$ data
- Novel analysis scheme: binning in t'
 - Better separation of resonant and non-resonant contribution
- Significant intensity in $J^{PC} = 1^{-+}$ spin-exotic wave
 - Resonance interpretation work in progress
- New axial-vector state $a_1(1420)$
 - Surprising find
 - Peculiar properties

• Extraction of resonance parameters limited by understanding of non-resonant contribution

• Improved models needed

- Pion diffraction into $\pi^-\eta$, $\pi^-\eta'$, $\pi^-\eta\eta$, $\pi^-\pi^0\omega$, $K\bar{K}\pi$, $K\bar{K}\pi\pi$, ...
- Kaon diffraction into $K^-\pi^+\pi$
- Central-production reactions

World's largest $\pi^-\pi^+\pi^-$ data set

- Crosscheck systematics with $\pi^-\pi^0\pi^0$ data
- Novel analysis scheme: binning in t'
 - Better separation of resonant and non-resonant contribution
- Significant intensity in $J^{PC} = 1^{-+}$ spin-exotic wave
 - Resonance interpretation work in progress
- New axial-vector state $a_1(1420)$
 - Surprising find
 - Peculiar properties

• Extraction of resonance parameters limited by understanding of non-resonant contribution

• Improved models needed

- Pion diffraction into $\pi^-\eta$, $\pi^-\eta'$, $\pi^-\eta\eta$, $\pi^-\pi^0\omega$, $K\bar{K}\pi$, $K\bar{K}\pi\pi$, ...
- Kaon diffraction into $K^-\pi^+\pi$
- Central-production reactions

World's largest $\pi^-\pi^+\pi^-$ data set

- Crosscheck systematics with $\pi^-\pi^0\pi^0$ data
- Novel analysis scheme: binning in t'
 - Better separation of resonant and non-resonant contribution
- Significant intensity in $J^{PC} = 1^{-+}$ spin-exotic wave
 - Resonance interpretation work in progress
- New axial-vector state $a_1(1420)$
 - Surprising find
 - Peculiar properties
- Extraction of resonance parameters limited by understanding of non-resonant contribution
 - Improved models needed

- Pion diffraction into $\pi^-\eta$, $\pi^-\eta'$, $\pi^-\eta\eta$, $\pi^-\pi^0\omega$, $K\bar{K}\pi$, $K\bar{K}\pi\pi$, ...
- Kaon diffraction into $K^-\pi^+\pi$
- Central-production reactions

World's largest $\pi^-\pi^+\pi^-$ data set

- Crosscheck systematics with $\pi^-\pi^0\pi^0$ data
- Novel analysis scheme: binning in t'
 - Better separation of resonant and non-resonant contribution
- Significant intensity in $J^{PC} = 1^{-+}$ spin-exotic wave
 - Resonance interpretation work in progress
- New axial-vector state $a_1(1420)$
 - Surprising find
 - Peculiar properties
- Extraction of resonance parameters limited by understanding of non-resonant contribution
 - Improved models needed

- Pion diffraction into $\pi^-\eta$, $\pi^-\eta'$, $\pi^-\eta\eta$, $\pi^-\pi^0\omega$, $K\bar{K}\pi$, $K\bar{K}\pi\pi$, ...
- Kaon diffraction into $K^-\pi^+\pi^-$
- Central-production reactions