The DVCS Physics Program at COMPASS

A. Ferrero (CEA-Saclay/IRFU/SPhN) for the COMPASS Collaboration PHOTON2015 - Novosibirsk, 15-19/06/2015 4rfu)

Where does the spin of the nucleons come from? Proton spin sum rule: $\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_q + L_g$

The ``proton spin crisis'': $\Delta \Sigma \rightarrow \begin{cases} \text{Static quark model} : \Delta \Sigma = 1 \\ \text{Weak baryon decays} : \Delta \Sigma \simeq 0.58 \\ \text{Experiments} : \Delta \Sigma \simeq 0.3 \end{cases}$

$$\Delta G = ?? \qquad L_{q,g} = ??$$

A. Ferrero (CEA-Saclay/IRFU/SPhN) On behalf of the COMPASS coll COMPASS II

Where does the spin of the nucleons come from?

⁴This talk: ²²

11 A. Bacchetta

see, e.g., C. Lorcé, B. Pasquini, M. Vanderhaeghen, JHEP 1105 (11)

Towards a 3D Picture of the Nucleon...

Introduction to GPDs

"GPDs are **non-perturbative** objects entering the description of **hard exclusive** electroproduction"

Definition of variables:

μ

- x: average long. momentum NOT ACCESSIBLE
- ξ : long. mom. difference $\simeq x_B/(2 x_B)$
- t: four-momentum transfer related to b_{\perp} via Fourier transform

Introduction to GPDs

"GPDs are **non-perturbative** objects entering the description of **hard exclusive** electroproduction"

They encode **CORRELATIONS** between the long. mom. **x** and the transv. position \mathbf{b}_{\perp} of partons

Definition of variables:

x: average long. momentum - NOT ACCESSIBLE

 ξ : long. mom. difference $\simeq x_B/(2 - x_B)$

t: four-momentum transfer related to b_{\perp} via Fourier transform

Introduction to GPDs

``GPDs are non-perturbative objects entering the description of hard exclusive electroproduction"

They encode **CORRELATIONS** between the long. mom. x and the transv. position **b** of partons

Experimenta Compton Fo

 $\operatorname{Im}\mathcal{H}(\boldsymbol{\xi},\mathbf{t})$:

ally accessible through
rm Factors (CFFs):Definition of variable
x: average long. m
$$\xi$$
: long. mom. diff
t: four-momentur
related to b_{\perp} vi $H(x = \xi, \xi, t)$ t: four-momentur
related to b_{\perp} vi

es:

- nomentum NOT ACCESSIBLE
- ference $\simeq x_{\rm B}/(2 x_{\rm B})$
- n transfer a Fourier transform

 $\operatorname{Re}\mathcal{H}(\xi,t) = \int \frac{\mathrm{dx}\operatorname{H}(x,x,t)}{(x-\xi)} + \operatorname{Dterm}$

COMPASS: Versatile facility to study QCD with hadron (π[±], K[±], p ...) and lepton (polarized μ[±]) beams of ~200 GeV for hadron spectroscopy and hadron structure studies using SIDIS, DY, DVCS, DVMP...

COMPASS

LHC

Two stage magnetic spectrometer for **large angular & momentum acceptance** Particle identification with:

- Ring Imaging Cerenkov Detector
- Electromagnetic calorimeters (ECAL0, ECAL1 & ECAL2)
- Hadronic calorimeters
- Muon absorbers

ECAL2

Main new equipments

ECAL1

Target TOF System

24 inner & outer scintillators 1 GHz SADC readout goal: **310 ps** TOF resol

ECAL2

Main new equipments

ECAL1

Target TOF System

24 inner & outer scintillators 1 GHz SADC readout goal: **310 ps** TOF resol **ECALO** Calorimeter

Key features of COMPASS:

- Muon beams with opposite charge and polarization
 - $\circ E_{\mu} = 160 \text{ GeV}$

ECAL1

• $\sim 4 \cdot 10^8 \ \mu$ /spill, 9.6s/40s duty cycle

Reconstruction of the full event kinematics

- Recoil proton momentum from target TOF detector
- Photon energy and angle from ECALs

A. Ferrero (CEA-Sadlay/IREU/SPhN) On behalf of the COMPAS- PA

The GPD Physics Program at COMPASS

2008: Very short test run, short LH₂ target

- Observation of exclusive photon production
- Confirmed the global efficiency $\simeq 10\%$ used for projections

2009: 10 days, short LH₂ target

- Coarse binning in x_B
- First hint of DVCS at large x_B

2004-10: Exclusive ρ^0 and ω^0 meson production on a transv. pol. target and no recoil detector

- 2012: 4 weeks, full-scale LH₂ target and recoil detector
- **2016-7**: **2** x 6 months with LH₂ target and recoil det. \rightarrow GPD H

>2018: DVCS with transv. pol. target and recoil detector → GPD E Future addendum to COMPASS-II proposal

The DVCS Process at COMPASS Kinematics

Measurements of DVCS and BH Cross-sections

cross-sections on proton for $\mu^{+\downarrow}$, $\mu^{-\uparrow}$ beam with opposite charge & spin ($e_{\mu} \& P_{\mu}$)

$$d\sigma_{(\mu \rho \to \mu \rho \gamma)} = d\sigma^{BH} + d\sigma^{DVCS}_{unpol} + P_{\mu} d\sigma^{DVCS}_{pol} + e_{\mu} a^{BH} \mathcal{R}e A^{DVCS} + e_{\mu} P_{\mu} a^{BH} Im A^{DVCS}$$

Charge & Spin Difference and Sum:

$$\mathcal{D}_{CS,U} \equiv d\sigma(\mu^{+\downarrow}) - d\sigma(\mu^{-\uparrow}) \propto c_0^{ht} + c_1^{ht} \cos\phi \text{ and } c_{0,1}^{Int} \sim F_1 \operatorname{Re} \mathcal{H}$$

$$\mathcal{S}_{CS,U} \equiv d\sigma(\mu^{+\downarrow}) + d\sigma(\mu^{-\uparrow}) \propto d\sigma^{BH} + c_0^{DVCS} + K s_1^{Int} \sin\phi \text{ and } s_1^{Int} \sim F_1 \operatorname{Im} \mathcal{H}$$

$$c_1^{Int} \propto \Re e \left(F_1 \mathcal{H} + \xi (F_1 + F_2) \tilde{\mathcal{H}} - t/4m^2 F_2 \mathcal{E}\right)$$

NOTE: ✓ dominance of *H* with a proton target at COMPASS kinematics ✓ only leading twist and LO

Transverse Nucleon Imaging at COMPASS

Beam Charge and Spin SUM:

$$\mathbf{S}_{\mathbf{CS},\mathbf{U}} \equiv \mathbf{d}\sigma(\mu^{+\leftarrow}) + \mathbf{d}\sigma(\mu^{-\rightarrow}) \propto \mathbf{d}\sigma^{\mathrm{BH}} + \mathbf{d}\sigma^{\mathrm{DVCS}}_{\mathrm{unnol}} + \mathbf{Ks}_{1}^{\mathrm{Int}}\sin\phi$$

Integration over ϕ and BH subtraction $\rightarrow d\sigma^{DVCS}/dt \sim \exp(-B|t|)$

Transverse Nucleon Imaging at COMPASS

Beam Charge and Spin SUM:

 $\mathbf{S}_{\mathrm{CS},\mathrm{U}} \equiv \mathbf{d}\sigma(\mu^{+\leftarrow}) + \mathbf{d}\sigma(\mu^{-\rightarrow}) \propto \mathbf{d}\sigma^{\mathrm{BH}} + \mathbf{d}\sigma^{\mathrm{DVCS}}_{\mathrm{unnol}} + \mathrm{Ks}_{1}^{\mathrm{Int}}\sin\phi$

Integration over ϕ and BH subtraction $\rightarrow d\sigma^{DVCS}/dt \sim \exp(-B|t|)$

expected statistical and systematic uncertainties are shown

Transverse Nucleon Imaging at COMPASS

Beam Charge and Spin SUM:

 $\mathbf{S}_{\mathrm{CS},\mathrm{U}} \equiv \mathrm{d}\sigma(\mu^{+\leftarrow}) + \mathrm{d}\sigma(\mu^{-\rightarrow}) \propto \mathrm{d}\sigma^{\mathrm{BH}} + \mathrm{d}\sigma^{\mathrm{DVCS}}_{\mathrm{unpol}} + \mathrm{Ks}_{1}^{\mathrm{Int}} \sin\phi$

Integration over ϕ and BH subtraction $\rightarrow d\sigma^{DVCS}/dt \sim exp(-B|t|)$

2012 Pilot Run - 4 weeks

Full-scale CAMERA recoil detector and liquid H₂ target Partially equipped ECAL0

18 -10 - 2012

The Recoil TOF Detector CAMERA

The Recoil TOF Detector CAMERA

Time resolution measurement with cosmics

The Recoil TOF Detector CAMERA

Time resolution measurement with cosmics

Exclusive Photon Events Selection

Reconstructed interaction vertex in target volume

One single photon above DVCS production threshold

 $Q^2 > 1 (GeV/c)^2$, 0.05 < y < 0.9, $0.06 (GeV/c)^2 < t < 0.64 (GeV/c)^2$

Exclusivity conditions:

- $\Delta \varphi = \varphi_{\text{meas}}^{\text{proton}} \varphi_{\text{reco}}^{\text{proton}}$
- Vertex pointing (ΔZ)
- Transv. momentum balance: $\Delta p_{\perp} = p_{\perp,meas}^{proton} - p_{\perp,reco}^{proton}$
- Four-momentum balance:

$$M_X^2 = (p_{\mu_{in}} + p_{p_{in}} - p_{\mu_{out}} - p_{p_{out}} - p_{\gamma})^2$$

• Missing energy: $((p_{\mu_{in}} + p_{p_{in}} - p_{\mu_{out}} - p_{\gamma})^2 - M_p^2)/2M_p$

Exclusivity Variables: $\Delta \phi$

Exclusivity Variables: ΔZ

μin

Exclusivity Variables: Δp_{\perp}

Exclusivity Variables: M_X²

Proton Signal in Recoil Detector

Signal amplitude in outer scintillators vs. **beta** of recoiling particle **Proton signature** clearly visible after all exclusivity conditions

 π^0 s are one of the main backgroud sources for exclusive photon events

Two possible cases:

- visible (both γ detected, easy to reject)
- invisible (one γ ``lost", only estimated with MC)

 π^0 s are one of the main backgroud sources for exclusive photon events

Two possible cases:

- visible (both γ detected, easy to reject)
- **invisible** (one γ ``lost", only estimated with MC)

``Visible'' part estimated by combining the exclusive γ candidates with all additional low-energy γ s in the event

 π^0 s are one of the main backgroud sources for exclusive photon events

Two possible cases:

- visible (both γ detected, easy to reject)
- **invisible** (one γ ``lost", only estimated with MC)

``Visible'' part estimated by combining the exclusive γ candidates with all additional low-energy γ s in the event

``Invisible" part estimate via **MC simulations**:

- Semi-inclusive contribution from LEPTO
- Exclusive contribution from HEPGEN/π⁰ (Goloskokov-Kroll model)
- MC samples normalized to the ``visible'' π^0 in real data
- Two extreme cases considered:
 - 1. Fully semi-inclusive background
 - 2. Fully exclusive background
 - $\rightarrow~$ Gives lower and upper limits

 π^0 s are one of the main backgroud sources for exclusive photon events

Two possible cases:

- visible (both γ detected, easy to reject)
- invisible (one γ ``lost", only estimated with MC)

Exclusive γ Azimuthal Distribution in 3 $x_{\rm Bj}$ Bins

Exclusive γ Azimuthal Distribution in 3 $x_{\rm Bj}$ Bins

Exclusive γ Azimuthal Distribution in 3 $x_{\rm Bj}$ Bins

A. Ferrero (CEA-Saclay/IRFU/SPhN) On behalf of the COMPASS coll COMPASS II

Backup Slides

Recoil particle Measurement in CAMERA

What Makes COMPASS Unique?

COMPASS covers the unexplored region between collider (H1+Zeus) and low-energy fixed target (Hermes+JLab) experiments

- μ^+ and μ^- beams
- momentum: 100 190 GeV/c
- beam polarization: 80% opposite for μ^+ and μ^-
- coverage of intermediate x_B
 - → low x_B: **pure BH** useful for normalization
 - \rightarrow high x_B: **DVCS predominance**
- → unexplored region between ZEUS+H1 and HERMES+JLab

DVCS: What Can We Learn?

CAMERA Readout

Past, Present and Future GPD Experiments

