All-optical probes of quantum vacuum nonlinearity

Felix Karbstein

Helmholtz-Institut Jena & Friedrich-Schiller-Universität Jena

Helmholtz-Institut Jena

Probing quantum vacuum nonlinearity with high-intensity lasers

Felix Karbstein

Helmholtz-Institut Jena & Friedrich-Schiller-Universität Jena

Helmholtz-Institut Jena

(ii) Our approach

(iii) Vacuum birefringence

(iv) Conclusions & Outlook

- knows about particle content and interactions of the theory,
- in QED: e^- , e^+ , γ interacting via *e*: electron charge
- particle-antiparticle fluctuations, virtual (= off-shell) particles
- happens everywhere/all the time

At 1-loop level:

At 1-loop level:

- in particular affects photon propagation

At 1-loop level:

- in particular affects photon propagation; no measurable consequences

- in particular affects photon propagation; no measurable consequences
- vacuum has to be distorted, e.g., by external electromagnetic field

- in particular affects photon propagation; no measurable consequences
- vacuum has to be distorted, e.g., by external electromagnetic field

- in particular affects photon propagation; no measurable consequences

- vacuum has to be distorted, e.g., by external electromagnetic field

Quantum vacuum nonlinearity manifests itself in various effects, e.g.,

- direct light-by-light scattering

[Euler, Kockel: Naturwiss. 1935] [Karplus, Neuman: Phys. Rev. 1950]

Quantum vacuum nonlinearity manifests itself in various effects, e.g.,

Quantum vacuum nonlinearity manifests itself in various effects, e.g.,

Quantum vacuum nonlinearity manifests itself in various effects, e.g.,

Quantum vacuum nonlinearity manifests itself in various effects, e.g.,

(ii) Our approach

Problem: Most analytical calculations have been performed either for uniform, constant or planewave backgrounds (null-fields).

- Photon polarization tensor [Batalin, Shabad: JETP 1971] [Baier, Milshtein, Strakhovenko: JETP 1975] [Becker, Mitter: J. Phys. A 1975]
- ↔ the electromagnetic fields delivered by focused high-intensity lasers are highly inhomogeneous

(ii) Our approach

Problem: Most analytical calculations have been performed either for uniform, constant or planewave backgrounds (null-fields).

- Photon polarization tensor [Batalin, Shabad: JETP 1971] [Baier, Milshtein, Strakhovenko: JETP 1975] [Becker, Mitter: J. Phys. A 1975]
- ↔ the electromagnetic fields delivered by focused high-intensity lasers
 are highly inhomogeneous

w(z)

 \mathbf{Z}

 $2w_0$

 $-\mathbf{Z}_R$ -

- Pulsed, focused Gaussian beams

(ii) Our approach

Our approach: The locally constant field approximation constitutes a

good approximation, for

[…] den speziellen Fall [...], in dem keine wirklichen Elektronen und Positronen vorhanden sind, und in dem sich das Feld auf Strecken der Compton-Wellenlänge nur wenig ändert.

Our approach: The locally constant field approximation constitutes a good approximation, for

- analytical insights possible without having to solve the problem for the exact, inhomogeneous background field configuration.

Our approach: The locally constant field approximation constitutes a good approximation, for

- analytical insights possible without having to solve the problem for the exact, inhomogeneous background field configuration.
- \rightarrow Polarization tensor in pulsed, focused Gaussian beams

$$\Pi^{\rho\sigma}(k,k'|\mathcal{A}) = \left(g^{\rho\beta}k^{\alpha} - g^{\rho\alpha}k^{\beta}\right) \left[\int_{x} e^{i(k+k')x} \frac{\partial^{2}\mathcal{L}[\mathcal{A}]}{\partial F^{\alpha\beta}\partial F^{\mu\nu}}(x)\right] \left(k'^{\mu}g^{\nu\sigma} - k'^{\nu}g^{\mu\sigma}\right)$$

[FK, Shaisultanov: Phys. Rev. D 91 085027 (2015)]

Analogous scenario with pump = high-intensity laser:

[Heinzl, Liesfeld, Amthor, Schwoerer, Sauerbrey, Wipf: Opt. Comm. 2006]

Photon 2015, Budker Institute of Nuclear Physics, Novosibirsk, June 17th 2015

Analogous scenario with pump = high-intensity laser:

[Heinzl, Liesfeld, Amthor, Schwoerer, Sauerbrey, Wipf: Opt. Comm. 2006]

Analogous scenario with pump = high-intensity laser:

- in a recent study we account for the full inhomogeneous field profile of a linearly polarized, pulsed Gaussian laser beam

- pump: 1PW class laser ($W = 30J, \tau = 30fs, \lambda = 800nm, w_0 = 1\mu m$)
- probe: x-ray beam from FEL ($\omega = 12914 eV, N_{in} \simeq 10^{12}$)

Analogous scenario with pump = high-intensity laser:

 \rightarrow demand for high-purity x-ray polarimetry [Marx et al.: Phys. Rev. Lett. 2013]

Analogous scenario with pump = high-intensity laser:

 \rightarrow demand for high-purity x-ray polarimetry [Marx et al.: Phys. Rev. Lett. 2013]

- experimental confirmation of vacuum birefringence requires

 $rac{N_{\perp}}{N_{\mathrm{in}}} > \mathcal{P}$.

Photon 2015, Budker Institute of Nuclear Physics, Novosibirsk, June $17^{\mbox{\tiny th}}$ 2015

Our theoretical approach:

Idea: Interpret vacuum birefringence as vacuum emission process: [FK, Shaisultanov: Phys. Rev. D 91 113002 (2015)]

- laser fields correspond to macroscopic electromagnetic fields
- taking this literally means not to resolve the individual photons constituting the beams

Our theoretical approach:

Idea: Interpret vacuum birefringence as vacuum emission process: [FK, Shaisultanov: Phys. Rev. D 91 113002 (2015)]

- laser fields correspond to macroscopic electromagnetic fields
- taking this literally means not to resolve the individual photons constituting the beams
- \leftrightarrow vacuum in the presence of pump and probe beams $= |0\rangle$
- the signal of quantum vacuum nonlinearity is encoded in (single) photons $= |\gamma_{(p)}(\vec{k})\rangle$ emitted from the strong field region

$$\rightarrow$$
 amplitude: $S_{(p)}(\vec{k}) = \langle \gamma_p(\vec{k}) | \int_x a_\mu(x) j^\mu(x) | 0 \rangle.$

Our theoretical approach:

Idea: Interpret vacuum birefringence as vacuum emission process:

[FK, Shaisultanov: Phys. Rev. D 91 113002 (2015)]

 \rightarrow amplitude: $S_{(p)}(\vec{k}) = \langle \gamma_p(\vec{k}) | \int_x a_\mu(x) j^\mu(x) | 0 \rangle.$

Our theoretical approach:

Idea: Interpret vacuum birefringence as vacuum emission process:

[FK, Shaisultanov: Phys. Rev. D 91 113002 (2015)]

 \rightarrow amplitude: $S_{(p)}(\vec{k}) = \langle \gamma_p(\vec{k}) | \int_x a_\mu(x) j^\mu(x) | 0 \rangle.$

Our theoretical approach:

Idea: Interpret vacuum birefringence as vacuum emission process:

[FK, Shaisultanov: Phys. Rev. D 91 113002 (2015)]

 \rightarrow amplitude: $S_{(p)}(\vec{k}) = \langle \gamma_p(\vec{k}) | \int_x a_\mu(x) j^\mu(x) | 0 \rangle.$

Our theoretical approach:

Idea: Interpret vacuum birefringence as vacuum emission process:

[FK, Shaisultanov: Phys. Rev. D 91 113002 (2015)]

 \rightarrow amplitude: $S_{(p)}(\vec{k}) = \langle \gamma_p(\vec{k}) | \int_x a_\mu(x) j^\mu(x) | 0 \rangle.$

Our theoretical approach:

Idea: Interpret vacuum birefringence as vacuum emission process:

ASSOCIATION

Our **results**:

[FK, et al.: in preparation 2015]

- we consider three different cases

Our **results**:

[FK, et al.: in preparation 2015]

- we consider three different cases

Our **results**:

[FK, et al.: in preparation 2015]

- we consider three different cases

Our **results**:

[FK, et al.: in preparation 2015]

- we consider three different cases

Our **results**:

[FK, et al.: in preparation 2015]

- we consider three different cases

Our **results**:

[FK, et al.: in preparation 2015]

- we consider three different cases

Our **results**:

[FK, et al.: in preparation 2015]

- we consider three different cases

Our **results**:

[FK, et al.: in preparation 2015]

- we consider three different cases

DESY

Our **results**:

[FK, et al.: in preparation 2015]

- we consider three different cases

DESY

Our **results**:

[FK, et al.: in preparation 2015]

- we consider three different cases

DESY

(iv) Conclusions and Outlook

(iv) Conclusions

- I focused on **all-optical probes** of quantum vacuum nonlinearity.
- I presented and advocated a different perspective to analyze optical signatures of **quantum vacuum nonlinearities**.
- I exemplarily discussed vacuum birefringence.

(iv) Conclusions & Outlook

- I focused on all-optical probes of quantum vacuum nonlinearity.
- I presented and advocated a different perspective to analyze optical signatures of **quantum vacuum nonlinearities**.
- I exemplarily discussed vacuum birefringence.
- Our approach can be straightforwardly generalized to the study of other (inhomogeneous) electromagnetic field profiles.
- It can be easily adopted to various other optical probes.

(iv) Conclusions & Outlook

- I focused on all-optical probes of quantum vacuum nonlinearity.
- I presented and advocated a different perspective to analyze optical signatures of **quantum vacuum nonlinearities**.
- I exemplarily discussed vacuum birefringence.
- Our approach can be straightforwardly generalized to the study of other (inhomogeneous) electromagnetic field profiles.
- It can be easily adopted to various other optical probes.

Thank you for your attention!

