A Historical Retrospect of Two-Photon Physics in the 1980ies at DORIS, SPEAR, PETRA and PEP

A Prosperous Era of yy Physics

Hermann Kolanoski Humboldt-Universität zu Berlin and DESY

Photon'15 Novosibirsk 15-19-Jun-15

H.Kolanoski - Two-Photon Physics in the 1980ies

Novosibirsk 30 Years Ago

republique federale d'allenagne

goo to visit the ussr for two i xLad to wnvice in march 1985 stop we shall cover all expenses for Your stay in user including transportation inside our country stop best regards director nuclear physics institute novosibirsk

a n skrinsky

Photon'15 Novosibirsk 15-19-Jun-15

H.Kolanoski - Two-Photon Physics in the 1980ies

28

4

ίż.

How to become сибиря́к – Siberian?

Proc H. Kolamoski for the first results on snow in Sibiria 10 km

From dirit szü tiaihir Prof. A.P. ONUCHIEN 24 MARCH 1985 NOVOSIBITSK

H.Kolanoski - Two-Photon Physics in the 1980ies

Photon'15 Novosibirsk 15-19-Jun-15

9th Intern. Workshop on Photon-Photon Collisions: San Diego 1992

An Experimentalists View of Two-Photon Physics H. Kolanoski, Univ. Dortmund 4 years ago, the yy - Workshop in Shoresh summarized the PETRA and PEP era. Purpose of this talk is to build a bridge from the sy-Workshops of the 70-80 lies by recalling for the new comers the status of two-pholon experiments Cas of the Shoresh Workshop.

Reviews

Proceedings of the International Workshops on Photon-Photon Collisions

- Sheffield, 1995
- San Diego, 1992
- Jerusalem, 1988
- Paris, 1986
- Lake Tahoe, 1984
- Aachen, 1983
- Paris, 1981
- Amiens, 1980
- Lake Tahoe, 1979
- Paris, 1973
- H. Kolanoski, Two-Photon Physics at e⁺e⁻ Storage Rings, Springer Tracts in Mod. Phys. 105 (1984).
- Ch. Berger and W. Wagner, Photon Photon Reactions, Physics Reports 146 (1987)
- H. Kolanoski and Zerwas, Two Photon Physics, in Ali, A., Soeding, P. (Ed.): High Energy Electron-positron Physics, World Scientific (1988).

Pioneering Times of Two-Photon Physics

My First Encounter with Two Photon Physics

The PETRA/PEP Era of Two-Photon Physics

Machine	Running	Location	Ebeam [GeV]	<i>Ecm</i> [GeV]
SPEAR	1972-1990	Stanford (USA)	4 + 4	8
DORIS	1973-1993	DESY (Hamburg)	5.6 + 5.6	11.2
CESR	1979-2002	Cornell (USA)	6 + 6	12
VEPP-4M	1994-	Novosibirsk	6 + 6	12
PETRA	1978-1986	DESY (Hamburg)	20 + 20	40
PEP	1980-1990	Stanford (USA)	15 + 15	30
TRISTAN	1987-1995	KEK (Japan)	32 + 32	74

- QED: $\gamma\gamma \rightarrow$ lepton pairs
- C=+ meson resonances
- total cross section $\gamma\gamma \rightarrow$ hadrons
- inclusive particle spectra
- hard scattering, high-p_T, jets
- structure of the photon

Basic and detailed theory in the 1970ies:

Kessler, Budnev et al., Walsh and Zerwas, Witten, Brodsky-Lepage, Bardeen&Buras . . .

Kinematics and Cross Sections

Only TT terms remain $\neq 0$ at $Q_i^2=0$ (i=1,2)

with the strengthening of computers the **`equivalent photon approximation'** (EPA) became less important for the actual analyses

Experimental Characteristics

Photon'15 Novosibirsk 15-19-Jun-15 H.Kolanoski - Two-Photon Physics in the 1980ies

Experimental Characteristics: (No-)Tagging

A Bit of History of Events

Experim. highlights in XX physics Novosibitsk + Frascati: 1st observation • 1971 of yy- QED : ee -> ee l'e Mark II (SPEAR) : XX -> 7' • 1979 PLUTO (PETRA): 88 -> f2 (1270) . 1980 TASSO (PETRA) : XX → S°P° (9999?) . 1980 PLUTO (PETRA) : GTOT (88 -> hadrons) . 1981 THSSO + JADE : XX -> jets . 1981 PLUTO : F,Y . 1981 · (phase of detailed work) TPC/88 (PEP) : 8*8 -> f. (1420) . 1986

From

QED to

Gamma-Gamma Couplings to Resonances

Resonances in $\gamma\gamma \rightarrow \gamma\gamma$

Photon'15 Novosibirsk 15-19-Jun-15 H.Kolanoski - Two-Photon Physics in the

Resonances Decaying into π, K, p Pairs

Gamma-Gamma Couplings to Axial Vectors

γγ Couplings for J^{PC} =0⁻⁺, 0⁺⁺, 2⁺⁺

0-+	Two photon decay width of 0	-+ states as measured	in 2y experiments	2++	Two photon decay width	of 2 ⁺⁺ states as measure	d in 2y reactions
Res.	<u>Г., [keV]</u>	Ref.	Remark	Res.	$\Gamma_{\gamma\gamma}$ [keV]	Ref.	Remark
π^0	$(7.9 \pm 1.4 \pm 1.6) \times 10^{-3}$	Crystal Ball [3.7]	prel.	f(1270)	$2.3 \pm 0.5 \pm 0.3$	PLUTO [3.24]	
η	$0.56 \pm 0.12 \pm 0.1$ $0.64 \pm 0.14 \pm 0.13$ $0.58 \pm 0.02 \pm 0.06$ $0.53 \pm 0.04 \pm 0.04$ Average: 0.56 ± 0.04	Crystal Ball [3.8] TPC/2γ [3.9] Crystal Ball [3.10] JADE [3.11]	prel.		$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	TASSO [3.25] Mark II [3.26] Crystal Ball [3.27] CELLO [3.28] Mark II [3.29] DELCO [3.30] PLICTO [3.31]	
η'(958)	$5.8 \pm 1.1 \pm 1.2$ $6.2 \pm 1.1 \pm 0.8$ $5.0 \pm 0.5 \pm 0.9$ $5.1 \pm 0.4 \pm 0.7$ $3.8 \pm 0.26 \pm 0.43$ 3.8 ± 0.5 $4.5 \pm 0.3 \pm 0.6$ Average: 4.3 ± 0.27	Mark II [3.12] CELLO [3.13] JADE [3.14] TASSO [3.15] PLUFO [3.16] Mark II [3.17] TPC/2γ [3.18]	prei. prei.	A. 32	$3.2 \pm 0.1 \pm 0.4$ $-9 \text{ erage} 2.78 \pm 0.14$ $0.77 \pm 0.18 \pm 0.27$ $0.81 \pm 0.19 \pm 0.27$ $1.06 \pm 0.18 \pm 0.19$ $1.14 \pm 0.20 \pm 0.26$ $0.9 \pm 0.27 \pm 0.16$	Crystal Balf [3.27] CELLO [3.13] PLUTO [3.35] Crystal Ball [3.36] TASSO [3.37]	
ı(1440)	<1.0 95% CL <2.0 90% CL <1.5 95% CL <2.2 95% CL <1.5 95% CL	TASSO [3.12] Mrk I [4.12] TASSO [3:15] TASSO [3:20] TPC/2γ [3:21]	$\begin{split} & \Gamma_{\gamma\gamma} \cdot BR(R \to \rho^0 \rho^0) \\ & \Gamma_{\gamma\gamma} \cdot BR(R \to K\bar{K}\pi) \\ & \Gamma_{\gamma\gamma} \cdot BR(R \to \rho^0 \gamma) \\ & \Gamma_{\gamma\gamma} \cdot BR(R \to K\bar{K}\pi) \\ & \Gamma_{\gamma\gamma} \cdot BR(R \to K_s^0 K^{\pm} \pi^{\mp}) \end{split}$	т (1525) ө(1690)	Average 0.95 ± 0.14 $0.11 \pm 0.02 \pm 0.04$ < 0.28 95% CL < 0.28 95% CL	TASSSO [3.38] TPC/2γ [3.32] TASSO [3.20]	$\Gamma_{\gamma\gamma} \cdot BR(R \to K\bar{K})$ $\Gamma_{\gamma\gamma} \cdot BR(R \to K\bar{K})$ $\Gamma_{\gamma\gamma} \cdot BR(R \to K\bar{K})$
η _c (2980)	$\begin{array}{l} 0.5^{+0.2}_{-0.1} \pm 0.1 \\ < 0.32 95\% \ \text{CL} \\ < 4.4 95\% \ \text{CL} \end{array}$	PLUTO [3.22] TASSO [3.23] TASSO [3.20]	$ \begin{split} &\Gamma_{\gamma\gamma} \cdot \mathrm{BR}(\mathrm{R} \to \mathrm{K}^{0}_{s}\mathrm{K}^{\pm}\pi^{\mp}) \\ &\Gamma_{\gamma\gamma} \cdot \mathrm{BR}(\mathrm{R} \to \mathrm{p}\bar{\mathrm{p}}) \\ &\Gamma_{\gamma\gamma} \cdot \mathrm{BR}(\mathrm{R} \to \mathrm{K}\mathrm{K}\pi) \end{split} $	(= f ₂ (172	(0)) <1.2 95% CL <0.3 95% CL <0.1 95% CL	TASSO [3.19] Crystal Ball [3.39] TPC/2γ [3.32]	$\frac{\Gamma_{\gamma\gamma} \cdot BR(R \to \rho^0 \rho^0)}{\Gamma_{\gamma\gamma} \cdot BR(R \to m)}$ $\frac{\Gamma_{\gamma\gamma} \cdot BR(R \to K^+ K^-)}{P_{\gamma\gamma} \cdot BR(R \to K^+ K^-)}$
-		Two pho	ton decay width of 0 ⁺⁺ states a	is measured	I in 2γ reactions	110	oni berger & wagner
	$ \begin{array}{ c c c c c c c c } \hline O^{++} & \hline Res. & \hline \Gamma_{\gamma\gamma} \ [keV] & Ref. & Remark \\ \hline S^*(975) & <1 \ keV & 95\% \ CL & Crystal \ Ball \ [3.27] \\ \hline \delta(980) & 0.19 \pm 0.07 & Crystal \ Ball \ [3.36] & \Gamma_{\gamma\gamma} \cdot BR(R \rightarrow \delta \rightarrow \eta\pi) \\ \hline \varepsilon(1300) & <1.5 \ keV & 95\% \ CL & TASSO \ [3.25] & \Gamma_{\gamma\gamma} \cdot BR(R \rightarrow \pi\pi) \\ \hline \end{array} $				f ₀ (975) a ₀ (980) see PDG 86 p.4 f ₀ (1300)		

Photon'15 Novosibirsk 15-19-Jun-15 H.Kolanoski - Two-Photon Physics in the 1980ies

Vector Meson Pairs Near Threshold

It looks as if there is a resonant $\rho^0 \rho^0$ state below threshold. Why not in $\rho^+\rho^-$?

4-quark model: I=0 & I=2 interference;

VDM same pattern but no enhancement

4-quark model predicts spin-parity and resonances in other

$$\gamma\gamma \rightarrow VV' (V, V' = \rho, \omega, \phi)$$

Some predictions work - others not (e.g. for $\gamma\gamma \rightarrow \rho\phi$)

H.Kolanoski - Two-Photon Physics in the 1980ies

Vector Meson Pairs: 4-Quark States?

Model	Ref.	ρ⁰ρ⁰	ρ	ωω	ρ [°] ω	60	ρφ
VDM (yV-coupling)		1	0	1/81	1/9	4/81	2/9
Quark model	[4.12]	1	4/25	-	-	4/25	-
Resonance $(I=0)$	• •	1	2	-	0	_	0
qqqq	[4.10]	1	~0	~0.03	~0.6	~0.05	~0.6
qqqq	[4.11]	1	~0	~0.06	~0.03	~0.01	~0.1
t channel factorization	[4.13]	1	small	small	small	<0.01	<0.01
from Berger&Wagner							

• result not conclusive

H.Kolanoski - Two-Photon Physics in the 1980ies

Two-Photon Total Cross Section

Inclusive Particle Spectra

Production of High- p_T Jets

Brodsky-Lepage: Hadron Pairs

1.5

2.0

 (GeV/c^2)

Brodsky-Lepage: Baryon Pairs

Hadronic Structure of the Photon

 $Q^2 = 25 \text{ GeV}^2$

Hadronic Structure of the Photon II

My "last encounter" of yy physics: HERA: the "direct" and "resolved" photon

п. којанозки - тwo-Photon Physics in the 1980ies

Summary, Outlook, what else?

- Basic experiments done at the e+e- colliders of the 80ies
- major improvements in statistics, in particular for meson spectroscopy, from BELLE and BaBar
- LEP opened highest Q²

The LHC as a photon collider

http://cms.web.cern.ch/news/lhc-photon-collider

An NLC photon-photon collider?

