γ-Pb and γ-γ collisions in CMS

Patricia Rebello Teles CBPF (Rio de Janeiro - Brazil)-CERN Don behalf of CMS Collaboration

PHOTON 2015 BINP Novosibirsk 15th – 19th June 2015

Outline

♦ Apparatus:

LHC and CMS detectors;

Photon-Hadron:

 \clubsuit "Photoproduction of the coherent J/ ψ in ultra-

peripheral PbPb collisions at 2.76 TeV"

(CMS-HIN-12-009)

Photon-Photon:

★ "Evidence for exclusive $\gamma\gamma \rightarrow W^+W^-$ production in pp collisions at 8 TeV"

(CMS-FSQ-13-008)

♦ Summary

Large Hadron Collider @ CERN

The Compact Muon Solenoid (central)

The CMS central & forward detectors

Calorimeters coverage helping to ensure exclusivity

Forward Region

Beam Scintilator Counters (BSC)** : $3.0 < |\eta| < 5.0$ Forward Showers Counters (FSC) : $6.0 < |\eta| < 8.0$

Photon-Hadron @ CMS

Photoproduction of the coherent J/ ψ accompanied by the forward neutron emission in ultra-peripheral PbPb collisions (UPCs) at 2.76 TeV

- \checkmark yN and yy collisions are abundantly produced at the LHC.
 - UPCs involve EM interactions at impact parameters b larger than the sum of the radii of colliding nuclei R.

 \checkmark Coherent γ -production: the γ couples to the nucleus N as a whole.

The cross section (XS) for producing vector mesons, such as J/ψ , is prop. square of the nuclear gluon density

- Dh J/Ψ
- Nuclear breakup modes (X_n0_n dominant)
 - $X_n O_n$: one of the ZDCs with at least one neutron "n" the other ZDC has no signal;
 - $X_n X_n$ both ZDCs have at least one "n";
 - 1_n0_n one of the ZDCs has exactly one "n" while the other has no signal;
 - $1_n 1_n$ both ZDCs have exactly one "n";

Signal extraction, corrections, syst. & X_nX_n ratios

Systematic uncertainties

Coherent J/ψ Diff. XS in ultra-peripheral PbPb

Data favor calculations that include nuclear gluon shadowing (GSZ-LTA model*), suggesting a significant reduction in the density of soft gluons within the nucleus.

Direct evidence of nuclear gluon shadowing at small-x values at LHC!

$d\sigma^{coh}_{Xn0n} / dy (J/\psi) = 0.37 \pm 0.04 \text{ (stat.)} \pm 0.04 \text{ (syst.) mb}$

(*) V. Guzey, M. Strikman, and M. Zhalov, "Disentangling coherent and incoherent quasielastic J/ψ photoproduction on nuclei by neutron tagging in ultraperipheral ion collisions at the LHC", Eur.Phys.J. C74 (2014) 2942, arXiv:1312.6486

Photon-Photon @CMS

Evidence for exclusive $\gamma\gamma \rightarrow W^+W^-$ production and constraints on Anomalous Quartic Gauge Couplings at $\sqrt{s} = 8$ TeV

 Clean final states with no hadronic activity =>remove inclusive backgrounds by requiring 0 extra tracks at dilepton vertex

- ✓ $\gamma\gamma \rightarrow \mu^+\mu^-$, e⁺e⁻ : test exclusivity requirement and proton dissociation;
- ✓ γγ→W⁺W⁻: based on Madgraph EPA; measure SM XS and look for anomalous quartic gauge couplings (aQGC) with dim6 and dim8 effective operator for γγW⁺W⁻ vertex (hep-ph/9908254 & hep-ph/0606118);

$$L_{6}^{0} = \frac{e^{2}}{8} \frac{a_{0}^{W}}{\Lambda^{2}} F_{\mu\nu} F^{\mu\nu} W^{+\alpha} W_{\alpha}^{-} - \frac{e^{2}}{16 \cos^{2} \Theta_{W}} \frac{a_{0}^{Z}}{\Lambda^{2}} F_{\mu\nu} F^{\mu\nu} Z^{\alpha} Z_{\alpha}$$

$$L_{6}^{C} = \frac{-e^{2}}{16} \frac{a_{C}^{W}}{\Lambda^{2}} F_{\mu\alpha} F^{\mu\beta} (W^{+\alpha} W_{\beta}^{-} + W^{-\alpha} W_{\beta}^{+}) - \frac{e^{2}}{16 \cos^{2} \Theta_{W}} \frac{a_{C}^{Z}}{\Lambda^{2}} F_{\mu\alpha} F^{\mu\beta} Z^{\alpha} Z_{\beta}$$

$$\mathcal{L}_{M,0} = \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\beta} \Phi \right]$$

$$\mathcal{L}_{M,1} = \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\nu\beta} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\beta} \Phi \right]$$

$$\mathcal{L}_{M,2} = \left[B_{\mu\nu} B^{\mu\nu} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\beta} \Phi \right]$$

$$\mathcal{L}_{M,3} = \left[B_{\mu\nu} B^{\nu\beta} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\mu} \Phi \right]$$

$$\mathcal{L}_{M,3} = \left[B_{\mu\nu} B^{\nu\beta} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\mu} \Phi \right]$$

$$\mathcal{L}_{M,3} = \left[B_{\mu\nu} B^{\nu\beta} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\mu} \Phi \right]$$

$$\mathcal{L}_{M,3} = \left[B_{\mu\nu} B^{\nu\beta} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\mu} \Phi \right]$$

$$\mathcal{L}_{M,3} = \left[B_{\mu\nu} B^{\nu\beta} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\mu} \Phi \right]$$

$$\mathcal{L}_{M,3} = \left[B_{\mu\nu} B^{\nu\beta} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\mu} \Phi \right]$$

$$\mathcal{L}_{M,3} = \left[B_{\mu\nu} B^{\nu\beta} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\mu} \Phi \right]$$

$$\mathcal{L}_{M,3} = \left[B_{\mu\nu} B^{\nu\beta} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\mu} \Phi \right]$$

$$\mathcal{L}_{M,3} = \left[B_{\mu\nu} B^{\nu\beta} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\mu} \Phi \right]$$

$$\mathcal{L}_{M,3} = \left[B_{\mu\nu} B^{\nu\beta} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\mu} \Phi \right]$$

$$\mathcal{L}_{M,3} = \left[B_{\mu\nu} B^{\nu\beta} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\mu} \Phi \right]$$

$$\mathcal{L}_{M,3} = \left[B_{\mu\nu} B^{\nu\beta} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\mu} \Phi \right]$$

$$\mathcal{L}_{M,3} = \left[B_{\mu\nu} B^{\nu\beta} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\mu} \Phi \right]$$

$$\mathcal{L}_{M,3} = \left[B_{\mu\nu} B^{\nu\beta} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\mu} \Phi \right]$$

$$\mathcal{L}_{M,3} = \left[B_{\mu\nu} B^{\nu\beta} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\mu} \Phi \right]$$

$$\mathcal{L}_{M,3} = \left[B_{\mu\nu} B^{\nu\beta} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\mu} \Phi \right]$$

$$\mathcal{L}_{M,3} = \left[B_{\mu\nu} B^{\nu\beta} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\mu} \Phi \right]$$

$$\mathcal{L}_{M,3} = \left[B_{\mu\nu} B^{\nu\beta} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\mu} \Phi \right]$$

$$\mathcal{L}_{M,3} = \left[B_{\mu\nu} B^{\nu\beta} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\mu} \Phi \right]$$

Backgrounds, strategy & systematics

- Signal: opposite-sign eµ pair (DY and γγ→II backs too big in ee, µµ channels), originating from a common primary vertex with pt(eµ) > 30GeV
- ✓ for high-purity pp->p l⁺ l⁻ p #events:
 - acoplanarity < 0.01 (due small Q² of exchanged γs),
 - ✓ inv. mass outside M_Z window,
 - ✓ 0 extra tracks at dilepton vertex to remove most of the inclusive WW back
 - ✓ $pt(e\mu) > 30 GeV$ for supress $\gamma\gamma \rightarrow \tau\tau$
 - high pT(eµ) tail to look for SM exclusive
 WW and aQGC

Systematics

	Uncertainty
Proton dissociation factor	10.5%
0 extra tracks Efficiency Correction	5.0%
Trigger and lepton ID	2.4%
Luminosity	2.6%
Total	12.1%

Selection step	Excl. $\gamma \gamma \rightarrow WW$	Total Background	WW+jets	$\gamma\gamma \to \tau\tau$	$DY \rightarrow \tau \tau$	Pompyt WW	Other Backgrounds
Trigger and preselection	26.9±0.2	12560±230	1057.5 ± 8.1	18.1 ± 0.8	7000 ± 75	206.2 ± 3.0	4280 ± 210
$m(\mu^{\pm}e^{\mp}) > 20 \text{ GeV}$	26.6±0.2	12370 ± 220	1035.5 ± 8.0	18.1 ± 0.8	6974±75	202.2 ± 3.0	4140 ± 210
Electron and Muon ID	22.5±0.2	6458±93	1027.9 ± 8.0	12.6 ± 0.7	4172 ± 58	197.2 ± 2.9	1048 ± 72
$\mu^{\pm}e^{\mp}$ vertex with 0 extra tracks	6.7 ± 0.2	14.9 ± 2.5	2.8 ± 0.4	4.3 ± 0.5	6.5 ± 2.3	$0.3 {\pm} 0.1$	1.1 ± 0.6
$p_T(\mu^{\pm}e^{\mp})>30~{ m GeV}$	5.3 ± 0.1	3.5 ± 0.5	$2.0{\pm}0.4$	0.9±0.2	0	$0.1{\pm}0.1$	$0.5 {\pm} 0.2$

#evts for 19.7fb-1; opposite sign μ and e from same vertex, $p_T^{l}>20$ GeV, $|n_l|<2.4$, < 16 extra tracks. 13

MC simulation

RESULT 1: evidence for exclusive \gamma\gamma \rightarrow W^+W^- production

✓ Excess of 3.6 over the background only hypothesis, including systematics.

✓ XS: $\sigma(pp \to p^{(*)}W^+W^-p^{(*)} \to p^{(*)}\mu^\pm e^\mp p^{(*)}) = 12.3^{+5.5}_{-4.4}$ fb.

✓ 0 extra tracks plot

✓ In signal region (p_T(µe) > 30 GeV): 13 events observed (data) over 3.5±0.5 (statistics) events expected for background and 5.3±0.1 (statistics) expected for signal (See table slide 13)

RESULT 1: evidence for exclusive $\gamma\gamma \rightarrow W^+W^$ production (signal region distributions)

- ✓ Muon-electron invariant mass, acoplanarity, and missing transverse energy in the $\gamma\gamma \rightarrow W^+W^-$ signal region.
- ✓ Agreement in shape
- The data is shown by points with error bars, the histograms indicate the expected SM signal and backgrounds.

RESULT 2: constraints on yyWW AQCG

- \checkmark The area outside the contour is excluded at 95% CL
- ✓ 7-16 times more stringent than search for WW_{γ} and WZ_{γ} production at Phys. Rev. D 90, 032008 (2014)
- ✓ 3-7 times more stringent than Vector Boson Scattering approach at Phys. Rev. Lett. 114 (2015) 051801)

Dim6, no FF, 95%CL

 $-1.2 \times 10^{-6} < a_0^W / \Lambda^2 < 1.2 \times 10^{-6} \text{ GeV}^{-2}$ $(a_C^W / \Lambda^2 = 0, \text{ no form factor})$ $-4.4 \times 10^{-6} < a_C^W / \Lambda^2 < 4.4 \times 10^{-6} \text{ GeV}^{-2}$ $(a_0^W / \Lambda^2 = 0, \text{ no form factor})$

Dim6, **FF**, **95%CL**

 $-1.1 \times 10^{-4} < a_0^W / \Lambda^2 < 1.0 \times 10^{-4} \,\text{GeV}^{-2} \ (a_C^W / \Lambda^2 = 0, \Lambda_{\text{cutoff}} = 500 \,\text{GeV})$ $-4.2 \times 10^{-4} < a_C^W / \Lambda^2 < 3.4 \times 10^{-4} \text{ GeV}^{-2}$ $(a_0^W / \Lambda^2 = 0, \Lambda_{\text{cutoff}} = 500 \text{ GeV})$

Dim8, no FF, 95%CL

 $-4.6 \times 10^{-12} < f_{M,0} / \Lambda^4 < 4.6 \times 10^{-12} \,\text{GeV}^{-4}$ (no form factor) $-17 \times 10^{-12} < f_{M,1} / \Lambda^4 < 17 \times 10^{-12} \,\text{GeV}^{-4}$ (no form factor) $-2.3 \times 10^{-12} < f_{M,2} / \Lambda^4 < 2.3 \times 10^{-12} \,\text{GeV}^{-4}$ (no form factor) $-8.3 \times 10^{-12} < f_{M,3} / \Lambda^4 < 8.3 \times 10^{-12} \,\text{GeV}^{-4}$ (no form factor)

Dim8, **FF**, **95%CL**

 $-4.2 \times 10^{-10} < f_{M,0} / \Lambda^4 < 3.8 \times 10^{-10} \,\text{GeV}^{-4} \ (\Lambda_{\text{cutoff}} = 500 \,\text{GeV})$ $-16 \times 10^{-10} < f_{M,1} / \Lambda^4 < 13 \times 10^{-10} \,\text{GeV}^{-4} \ (\Lambda_{\text{cutoff}} = 500 \,\text{GeV})$ $-2.1 \times 10^{-10} < f_{M,2} / \Lambda^4 < 1.9 \times 10^{-10} \,\text{GeV}^{-4} \ (\Lambda_{\text{cutoff}} = 500 \,\text{GeV})$ $-8.0 \times 10^{-10} < f_{M,3} / \Lambda^4 < 6.4 \times 10^{-10} \,\text{GeV}^{-4} \ (\Lambda_{\text{cutoff}} = 500 \,\text{GeV})$

Summary

- Coherent J/ ψ photoproduction cross section in ultra-peripheral PbPb collisions at $\sqrt{s_{NN}} = 2.76$ TeV in conjunction with forward neutrons has been measured, extending previous measurement to a new rapidity range.
 - ✓ The ratios of J/ψ production in different nuclear breakup modes have been measured for the first time at the LHC and found to be consistent with STARLIGHT and GSZ-LTA.
 - ✓ Data favor calculations that include nuclear gluon shadowing, suggesting a significant reduction in the density of soft gluons within the nucleus.

• Evidence for exclusive $\gamma\gamma \rightarrow W^+W^-$ production

- ✓ 13 events observed over expected background of 3.5 ± 0.5 events: excess of 3.6σ over the background only hypothesis.
- ✓ Significant improvement on aQGC limits.

BACKUP

- L1: hardware trigger system from calorimeters and muon systems only
 - Loosest muon trigger
 - At least one ZDC above threshold
 - No activity on both sides of the interaction point in the BSC detectors, $3 < |\eta| < 5$
- HLT: software trigger system using the full detector
 - Require reconstruction of at least one pixel track