Nikolay N. Achasov, <u>Alexey V. Kiselev</u>, and Georgii N. <u>Shestakov</u>

Sobolev Institute for Mathematics, Novosibirsk

To learn production of the scalar and tensor mesons in $\gamma\gamma^*(Q^2)\to\eta\pi^0$ reaction

arXiv:1504.07346

Introduction

This work is the development of N.N. Achasov and G.N. Shestakov, Phys. Rev. D 81, 094029 (2010), where the high-statistical Belle data on the $\gamma\gamma \rightarrow \eta\pi^0$ cross-section were analyzed.

We will analyze the Belle data together with the KLOE data on the $\phi \to \eta \pi^0 \gamma$ decay and predict the $\gamma^*(Q^2)\gamma \to \eta \pi^0$ crosssection.

References:

S. Uehara *et al.* (Belle Collaboration) Phys. Rev. D 80, 032001 (2009).

A. Aloisio *et al.* (KLOE Collaboration) Phys. Lett. B 536, 209 (2002).

Light scalar mesons

• Nonet of light scalar mesons: $a_0(980), f_0(980), \sigma(600), \kappa(800)$

 \bullet Were discovered ~ 50 years ago and became hard problem for the naive quark model from the outset

• Elucidation of their nature can shed light on confinement and the chiral symmetry realization way in the low energy region

• Perturbation theory and sum rules don't work

• The $\sigma(600)$, $a_0(980)$, and $f_0(980)$ are studied in $\phi \to S\gamma$ decays, $\pi\pi$ scattering, $\gamma\gamma \to \pi\pi$, $\eta\pi^0$ and other processes

Light scalars in $\gamma\gamma$ collisions

Let's $S = \sigma(600)$, $a_0(980)$, $f_0(980)$ and $T = a_2(1320)$, $f_2(1270)$.

In the $q\bar{q}$ model $\Gamma_{S\to\gamma\gamma}$ are originated from direct $S\gamma\gamma$ coupling. From the experimental results

$$\Gamma_{f_2(1270)\to\gamma\gamma} \approx 3 \text{ keV}, \ \Gamma_{a_2(1320)\to\gamma\gamma} \approx 1 \text{ keV}$$

it was found $\Gamma_{f_0(980) \rightarrow \gamma\gamma} \geq 3.4 \text{ keV}, \ \Gamma_{a_0(980) \rightarrow \gamma\gamma} \geq 1.3 \text{ keV}.$

Four quark model: $\Gamma_{f_0(980) \to \gamma\gamma} \sim \Gamma_{a_0(980) \to \gamma\gamma} \sim 0.27$ keV (Achasov, Devyanin, Shestakov, 1982) These widths are caused by rescatterings: $f_0 \to K^+K^- + \pi^+\pi^- \to \gamma\gamma, a_0 \to K^+K^- + \eta\pi^0 + \eta'\pi^0 \to \gamma\gamma$

The
$$\gamma\gamma \to \eta\pi^0$$
 data description
 $\sigma(\gamma\gamma \to \eta\pi^0) = \sigma_0 + \sigma_2$
 $\sigma_\lambda = \frac{\rho_{\pi\eta}(s)}{64\pi s} / |M_\lambda|^2 d\cos\theta \; ; \; \rho_{\pi\eta}(s) = \sqrt{(1 - \frac{(m_\eta + m_\pi)^2}{s})(1 - \frac{(m_\eta - m_\pi)^2}{s})}$

$$\begin{split} M_{0}(\gamma\gamma \rightarrow \pi^{0}\eta; s, \theta) &= M_{0}^{\operatorname{Born} V}(\gamma\gamma \rightarrow \pi^{0}\eta; s, \theta) \\ + \tilde{I}_{\pi^{0}\eta}^{V}(s) T_{\pi^{0}\eta \rightarrow \pi^{0}\eta}(s) + \tilde{I}_{\pi^{0}\eta'}^{V}(s) T_{\pi^{0}\eta' \rightarrow \pi^{0}\eta}(s) \\ &+ \left(\tilde{I}_{K^{+}K^{-}}^{K^{*+}}(s) - \tilde{I}_{K^{0}\bar{K}^{0}}^{K^{*0}}(s) + \tilde{I}_{K^{+}K^{-}}^{K^{+}}(s, x_{1}) \right) \\ &\times T_{K^{+}K^{-} \rightarrow \pi^{0}\eta}(s) + M_{\operatorname{res}}^{\operatorname{direct}}(s), \end{split}$$
(1)

$$M_{2}(\gamma\gamma \to \pi^{0}\eta; s, \theta) = M_{2}^{\operatorname{Born} V}(\gamma\gamma \to \pi^{0}\eta; s, \theta) + 80\pi d_{20}^{2}(\theta) M_{\gamma\gamma \to a_{2}(1320) \to \pi^{0}\eta}(s), \qquad (2)$$

 $d_{20}^2(\theta) = (\sqrt{6}/4)\sin^2\theta$

$$\begin{split} T_{\eta\pi^{0}\to\eta\pi^{0}} &= \frac{e^{2i\delta_{B}^{\eta\pi}} - 1}{2i\rho_{\eta\pi}(m)} + e^{2i\delta_{B}^{\eta\pi}} \sum_{S,S'} \frac{g_{S\eta\pi^{0}} G_{SS'}^{-1} g_{S'\eta\pi^{0}}}{16\pi} \\ G_{SS'}(m) &= \begin{pmatrix} D_{a'_{0}}(m) & -\Pi_{a_{0}a'_{0}}(m) \\ -\Pi_{a_{0}a'_{0}}(m) & D_{a_{0}}(m) \end{pmatrix} \\ T_{ab\to cd} &= e^{i\delta_{B}^{ab}} e^{i\delta_{B}^{cd}} T_{ab\to cd}^{res} \\ T_{ab\to cd}^{res} &= \sum_{S,S'} \frac{g_{Sab} G_{SS'}^{-1} g_{S'cd}}{16\pi} \\ S, S' &= a_{0}, a'_{0} \end{split}$$

Kaon form factor

$$\begin{split} M_{00}^{Born\,K^{+}}(s',x_{1}) &= 4\pi\alpha \frac{1-\rho_{K}^{2}(s)}{\rho_{K}(s)} (\ln\frac{1+\rho_{K}(s)}{1-\rho_{K}(s)} - \ln\frac{1+\frac{\rho_{K}(s)}{1+2x_{1}^{2}/s}}{1-\frac{\rho_{K}(s)}{1+2x_{1}^{2}/s}}) \\ \tilde{I}_{K^{+}K^{-}}^{K^{+}}(s,x_{1}) &= \frac{s}{\pi} \int_{4m_{K}^{2}}^{\infty} \frac{\rho_{K}(s')M_{00}^{Born\,K^{+}}(s',x_{1})}{s'(s'-s-i\epsilon)} \end{split}$$

New data description: we get rid of kaon formfactor.

Рис. 1: The $\gamma\gamma \rightarrow \eta\pi^0$ cross-section, "as is" (a) and averaged taking into account 20 MeV bins (b). Points are the Belle data.

Рис. 2: The $\eta \pi^0$ mass spectrum in $\phi \to \eta \pi^0 \gamma$ decay. Points represent the KLOE data.

The $\gamma\gamma \to \eta\pi^0$ and $\phi \to \eta\pi^0\gamma$ description The invariant mass spectrum of $\eta\pi^0$ in $a_0 \to \eta\pi^0$

$$\frac{dN_{\eta\pi^0}}{dm} \sim \frac{2m^2}{\pi} \frac{\Gamma(a_0 \to \eta\pi^0, m)}{|D_{a_0}(m)|^2}.$$
(3)

The width averaged over the resonance mass distribution

$$\langle \Gamma_{a_0 \to \gamma \gamma} \rangle_{\eta \pi^0} = \frac{1.1 \,\text{GeV}}{0.9 \,\text{GeV}} \frac{s}{4\pi^2} \sigma_0^{\text{res}}(\gamma \gamma \to \pi^0 \eta; s) d\sqrt{s} \tag{4}$$

Fit	1	2	3	4
m_{a_0}, MeV	993.86	994.50	995.34	988.69
$g_{a_0K^+K^-}^2/4\pi,{ m GeV}^2$	0.60	0.47	1.19	1.10
$g_{a_0\eta\pi}^2/4\pi,~{ m GeV}^2$	0.60	0.76	1.09	1.04
$g^{(0)}_{a_0\gamma\gamma},10^{-3}{ m GeV^{-1}}$	1.8	2.7810	4.5919	3.2520
$\Gamma^{(0)}_{a_0 \to \gamma \gamma}, \ \mathbf{keV}$	0.063	0.151	0.414	0.203
$<\Gamma^{direct}_{a_0 ightarrow\gamma\gamma}>_{\eta\pi^0},~{ m keV}$	0.019	0.031	0.030	0.024
$<\Gamma_{a_0\to (K\bar{K}+\eta\pi^0+\eta'\pi^0)\to\gamma\gamma}>_{\eta\pi^0}, \text{ keV}$	0.126	0.113	0.141	0.129
$<\Gamma_{a_0\to(K\bar{K}+\eta\pi^0+\eta'\pi^0+direct)\to\gamma\gamma}>_{\eta\pi^0}, \mathrm{keV}$	0.225	0.236	0.273	0.243
$\Gamma_{a_0}(m_{a_0}), \mathrm{MeV}$	$1\overline{16.76}$	140.81	$2\overline{18.65}$	186.75
$\Gamma^{eff}_{a_0}, \mathrm{MeV}$	34.6	57.24	38.76	44.76

$m_{a_0'}, \mathrm{MeV}$	1400	1400	1300	1500
$g_{a_0'K^+K^-}^2/4\pi, \mathrm{GeV}^2$	0.21	0.005	0.07	0.44
$g_{a_0'\eta\pi}^2/4\pi, { m GeV}^2$	0.77	0.18	0.52	0.63
$g_{a_0'\eta'\pi}^2/4\pi, { m GeV^2}$	1.80	4.12	2.15	2.64
$\Gamma^{(0)}_{a_0' \to \gamma\gamma}(m_{a_0'}), \text{ keV}$	1.65	5.38	2.96	5.21
$\Gamma_{a_0'}(m_{a_0'}), { m MeV}$	330.91	399.4	271.0	453.40
$\chi^2_{\gamma\gamma}$ / 36 points	12.4	4.8	5.3	6.7
χ^2_{sp} / 24 points	24.5	24.7	24.1	24.3
$(\chi^2_{\gamma\gamma}+\chi^2_{sp})/{ m n.d.f.}$	36.9/46	29.5/46	29.4/46	31.0/46

The effective Lagrangian of the $a_2 \rightarrow V(1)V(2)$ transition (N.N. Achasov and V.A. Karnakov, Z. Phys. C 30, 141 (1986))

$$\begin{split} L &= g_{a_2 V(1) V(2)} T_{\mu \nu} F_{\mu \sigma}^{V(1)} F_{\nu \sigma}^{V(2)} \,, \\ F_{\mu \sigma}^{V(i)} &= \partial_{\mu} V(i)_{\sigma} - \partial_{\sigma} V(i)_{\mu} \,; \, i = 1,2 \end{split}$$

 $\{V(1), V(2)\} = \{\rho, \omega\}, \{\rho', \omega'\}, \{\rho'', \omega''\}$

$$M_2(\gamma^*\gamma \to a_2(1320) \to \pi^0\eta; s, Q, \theta) = A(s, Q) \sin^2\theta$$
$$M_1(\gamma^*\gamma \to a_2(1320) \to \pi^0\eta; s, Q, \theta) = -\sqrt{2}A(s, Q) \sqrt{\frac{Q^2}{s}} \sin\theta\cos\theta$$

$$M_0(\gamma^*\gamma \to a_2(1320) \to \pi^0\eta; s, Q, \theta) = -A(s, Q)\frac{Q^2}{s}(\cos^2\theta - \frac{1}{3})$$

$$A(s,Q) = 20\pi F_{a_2}(Q) \sqrt{\frac{6s\Gamma_{a_2 \to \gamma\gamma}(s)\Gamma_{a_2 \to \eta\pi^0}(s)}{\rho_{\eta\pi^0}(s)}} \frac{1}{D_{a_2}(s)} \left(1 + \frac{Q^2}{s}\right)$$

QCD: At $Q \to \infty M_0 \sim 1/Q^2$, $M_1 \sim 1/Q^3$, $M_0 \sim 1/Q^4$. It is reached if $F_{a_2}(Q) \sim 1/Q^4$.

V.L. Chernyak and A.R. Zhitnitsky, Phys. Rep. 112, 173 (1984).
V.N. Baier and A.G. Grozin, Fiz. Elem. Chast. At. Yad. 16, 5 (1985) [Sov. J. Part. Nucl. 16, 1 (1985)].

$$\begin{aligned} \text{Let's } F_{a_2}(Q) &= \tilde{F}_{a_2}(Q)/\tilde{F}_{a_2}(0), \\ \bar{F}_{a_2}(Q) &= \frac{g_{a_2\rho\omega}}{f_\rho f_\omega} (\frac{1}{1+Q^2/m_\rho^2} + \frac{1}{1+Q^2/m_\omega^2}) + \frac{g_{a_2\rho'\omega'}}{f_{\rho'}f_{\omega'}} (\frac{1}{1+Q^2/m_{\rho'}^2} + \frac{1}{1+Q^2/m_{\omega'}^2}) \\ &+ \frac{g_{a_2\rho''\omega''}}{f_{\rho''}f_{\omega''}} (\frac{1}{1+Q^2/m_{\rho''}^2} + \frac{1}{1+Q^2/m_{\omega''}^2}) = \frac{g_{a_2\rho\omega}}{f_\rho f_\omega} (\frac{1}{1+Q^2/m_\rho^2} + \frac{1}{1+Q^2/m_\omega^2}) \\ &+ a(\frac{1}{1+Q^2/m_{\rho'}^2} + \frac{1}{1+Q^2/m_{\omega'}^2}) + b(\frac{1}{1+Q^2/m_{\rho''}^2} + \frac{1}{1+Q^2/m_{\omega''}^2})) \\ &\text{The condition } m_\rho^2 + m_\omega^2 + a(m_{\rho'}^2 + m_{\omega'}^2) + b(m_{\rho''}^2 + m_{\omega''}^2) = 0 \text{ leads} \\ &\text{to asymptotics, based on QCD.} \end{aligned}$$

The loop function $\tilde{I}_{K^+K^-}^{K^+}(s,Q) \to 8\alpha \ln \frac{Q^2}{m_K^2}$ at $Q \to \infty$.

Рис. 3: The cross-section $\sigma_0(\gamma\gamma^*(Q^2) \rightarrow \eta\pi^0, s) + \sigma_2(\gamma\gamma^*(Q^2) \rightarrow \eta\pi^0, s)$, $|\cos\theta| < 0.8$, for Fit1 parameters, a = -0.082 and b = -0.15. a) Solid line - $Q^2 = 0$, point line - $Q^2 = 0.25$ GeV², dashed line - $Q^2 = 1$ GeV²; b) Solid line - $Q^2 = 2.25$ GeV², point line - $Q^2 = 4$ GeV², dashed line - $Q^2 = 6.25$ GeV².

Рис. 4: The same cross-section averaged over bins.

Рис. 5: $\sigma_1(\gamma\gamma^*(Q^2) \rightarrow \eta\pi^0, s)$, $|\cos\theta| < 0.8$ for the same parameters. Solid line - $Q^2 = 0.25$ GeV², point line - $Q^2 = 1$ GeV², dashed line - $Q^2 = 6.25$ GeV².

Рис. 6: The $\sigma_0(\gamma\gamma^*(Q^2) \rightarrow \eta\pi^0, s) + \sigma_2(\gamma\gamma^*(Q^2) \rightarrow \eta\pi^0, s)$, for Fit 1, a = 3.835 and b = -3.

Рис. 7: The $\sigma_0(\gamma\gamma^*(Q^2) \rightarrow \eta\pi^0, s) + \sigma_2(\gamma\gamma^*(Q^2) \rightarrow \eta\pi^0, s), |\cos\theta| < 0.8$, for Fit 1, a = -4.413 and b = 3.

Conclusion

- 1. Belle data Данные on the $\gamma\gamma \rightarrow \eta\pi^0$ where analyzed simultaneously with the KLOE data on the $\phi \rightarrow \eta\pi^0\gamma$ decay without kaon formfactor, $G_{K^+}(t, u) = 1$. The data supports scenario based on the four-quark model of $a_0(980)$.
- 2. The prediction of the $\sigma(\gamma\gamma^*(Q^2) \to \eta\pi^0)$ is presented, different variants are considered.
- 3. The QCD-based asymptotics of $\sigma(\gamma\gamma^*(Q^2) \rightarrow \eta\pi^0)$ is reached after taking into account vector excitations.