Δ (1232) contribution to real radiative corrections for elastic electron-proton scattering

R.E. Gerasimov ${ }^{1}$
${ }^{1}$ Budker Institute of Nuclear Physics, Novosibirsk
Novosibirsk State University

PHOTON, 2015

- Form factors contain information about proton internal structure.

$$
\begin{gathered}
\Gamma^{\mu}(q)=G_{M}\left(q^{2}\right) \gamma^{\mu}+\left(G_{E}\left(q^{2}\right)-G_{M}\left(q^{2}\right)\right) \frac{2 M_{p}\left(p^{\prime}+p\right)^{\mu}}{4 M_{p}^{2}-q^{2}} \\
G_{E}(0)=1, \quad G_{M}(0)=\mu_{p}
\end{gathered}
$$

- Form factors can be extracted from unpolarized elastic ep-scattering (since 1950s)

$$
\begin{aligned}
& \frac{d \sigma_{\text {Rosenbluth }}}{d \Omega_{3}} \propto \sum^{-}\left|M_{1 \gamma}\right|^{2} \propto \tau \mathcal{G}_{M}^{2}\left(q^{2}\right)+\epsilon \mathcal{G}_{E}^{2}\left(q^{2}\right) \\
& \tau=\frac{-q^{2}}{4 M_{D}^{2}}, \quad \epsilon=\left[1+2(1+\tau) \tan ^{2} \frac{\theta_{3}}{2}\right]^{-1}
\end{aligned}
$$

- Rosenbluth separation method leads to dipole dependence of form factors w.r.t. squared momentum transfer $\left(Q^{2}=-q^{2}\right)$, and the ratio $\mu_{p} G_{E} / G_{M} \approx 1$.
- Form factors ratio can be measured in experiments with polarized particles (JLab, 2000;...). The result is significantly different: $\mu_{p} G_{E} / G_{M}$ decreases with the rise of Q^{2}.

- $e^{ \pm} p$ scattering cross section ratio

$$
R=\frac{d \sigma\left(e^{+} p\right) / d \Omega_{3}}{d \sigma\left(e^{-} p\right) / d \Omega_{3}}
$$

- C-odd radiative corrections make the difference between R and 1

$$
R-1 \approx-2\left(\delta_{2 \gamma}+\delta_{\text {brem,int }}\right)
$$

- Virtual radiative corrections $\delta_{2 \gamma}$ comes from the interference of born amplitude with the TPE amplitudes. We are interested in the contribution of $M_{2 \gamma}^{\text {hard }}$

$$
\delta_{2 \gamma}=\frac{2 \operatorname{Re}\left[\bar{\sum} M_{1 \gamma}^{\dagger}\left(M_{2 \gamma}^{\text {soft }}+M_{2 \gamma}^{\text {hard }}\right)\right]}{\bar{\sum}\left|M_{1 \gamma}\right|^{2}}
$$

- Real radiative correction $\delta_{\text {brem,int }}$ comes from the interference of lepton and proton bremsstrahlung

$$
\delta_{\text {brem }, \text { int }}=\frac{\int 2 \operatorname{Re}\left[\bar{\sum} M_{\text {brem }, \text { e }}^{\dagger} M_{\text {brem }, p}\right]}{\bar{\sum}\left|M_{1 \gamma}\right|^{2}}
$$

- Integration over final particles phase space is restricted by certain experimental cuts. It can not be done analytically, so ESEPP event generator was used for the experiment at the VEPP-3 storage ring

- We can consider $\Delta(1232)$ in the intermediate state.

Real radiative corrections are determined by experimental cuts and in principal could alter results of the Rosenbluth separation and the TPE contribution extraction from the $e^{ \pm} p$ cross section ratio

- These amplitudes can be calculated for concrete form of $\gamma \Delta p$ - vertex explicitly. It was also done, but the expressions are complex for analyses
- The contribution of Δ appeared to be small, so we will present estimates for the contributions of $\left|M_{\Delta}\right|^{2}$ and C-odd interference term $M_{\text {brem }, ~}{ }^{\dagger} M_{\Delta}$.

$$
p(p-q) \underbrace{}_{\Gamma_{\gamma p \rightarrow \Delta}^{\mu \alpha}(p, q)} \gamma(p, \mu)
$$

- 3 form factors for the vertex (TPE- Δ arXiv:1407.2711)

$$
\begin{aligned}
& \Gamma_{\gamma p \rightarrow \Delta}^{\mu \alpha}(p, q)= \\
& \begin{aligned}
&-\sqrt{\frac{2}{3}} \frac{1}{2 M_{\Delta}^{2}} \gamma^{5}\left\{G_{\Delta}^{(1)}\left(q^{2}\right)\left[g^{\mu \alpha} \hat{q} \hat{p}-p^{\mu} \hat{q} \gamma^{\alpha}-\gamma^{\alpha} \gamma^{\mu}(p \cdot q)+\hat{p} \gamma^{\mu} q^{\alpha}\right]\right. \\
& \quad+G_{\Delta}^{(2)}\left(q^{2}\right)\left[p^{\mu} q^{\alpha}-g^{\mu \alpha}(p \cdot q)\right]
\end{aligned} \\
& \left.\quad-\frac{G_{\Delta}^{(3)}\left(q^{2}\right)}{M_{\Delta}}\left[q^{2}\left(p^{\mu} \gamma^{\alpha}-g^{\mu \alpha} \hat{p}\right)+q^{\mu}\left(q^{\alpha} \hat{p}-\gamma^{\alpha}(p \cdot q)\right)\right]\right\}
\end{aligned}
$$

- In the following we will express the results in terms of 3 helicity amplitudes for the process $\gamma^{*} p \rightarrow \Delta$.

$$
\begin{gathered}
M_{+1,+\frac{1}{2},+\frac{1}{2}}^{\gamma^{*} p \rightarrow \Delta}=C \\
\frac{1}{\sqrt{2}} A_{1 / 2}\left(q^{2}\right), \quad M_{+1,-\frac{1}{2},+\frac{3}{2}}^{\gamma^{*} p \rightarrow \Delta}=C \sqrt{\frac{3}{2}} A_{3 / 2}\left(q^{2}\right) \\
i M_{0, \frac{1}{2},-\frac{1}{2}}^{\gamma^{*} p \rightarrow \Delta}=C \frac{\sqrt{-q^{2}}}{M_{\Delta}} S_{1 / 2}\left(q^{2}\right)
\end{gathered}
$$

with $C=\frac{\sqrt{\left(M_{\Delta}-M_{\rho}\right)^{2}-q^{2}} \sqrt{\left(M_{\Delta}+M_{p}\right)^{2}-q^{2}}}{2\left(M_{\Delta}+M_{p}\right)}$, and q^{2} is the photon virtuality.

- Decay $\Delta \rightarrow \gamma p$

$$
\begin{aligned}
\Gamma_{\Delta \rightarrow \gamma p}= & \frac{1}{8 \pi} \frac{\left(M_{\Delta}^{2}-M_{p}^{2}\right)^{3}}{32 M_{\Delta}^{3}\left(M_{\Delta}+M_{p}\right)^{2}}\left[A_{1 / 2}^{2}(0)+3 A_{3 / 2}^{2}(0)\right] \\
& \frac{\Gamma_{\Delta \rightarrow \gamma p}}{\Gamma_{\Delta}}=(0.55-0.65) \%(P D G)
\end{aligned}
$$

Contribution of $\left|M_{\Delta}\right|^{2}$. Rough estimate

- $e p \rightarrow e \Delta$

$$
\sum^{-}\left|M_{e p \rightarrow e \Delta}\right|^{2} \propto\left\{A_{1 / 2}^{2}\left(q^{2}\right)+3 A_{3 / 2}^{2}\left(q^{2}\right)+4 \epsilon \frac{-q^{2}}{M_{\Delta}^{2}} S_{1 / 2}^{2}\left(q^{2}\right)\right\}
$$

- A very rough estimate for the contribution of $\left|M_{\Delta}\right|^{2}$

$$
\delta_{\Delta} \simeq \frac{d \sigma_{e p \rightarrow e \Delta} / d \Omega_{3}}{d \sigma_{e p \rightarrow e p} / d \Omega_{3}} \times \frac{\Gamma_{\Delta \rightarrow p \gamma}}{\Gamma_{\Delta}} .
$$

which gives δ_{Δ} about 0.5%, and it is not small.

Contribution of $\left|M_{\Delta}\right|^{2}$. More accurate estimate

- $\Delta(1232)$ propagator

$$
\frac{i\left(\hat{p}_{\Delta}+M_{\Delta}\right)}{p_{\Delta}^{2}-M_{\Delta}+i \Gamma_{\Delta} M_{\Delta}}\left(g^{\alpha \beta}-\frac{\gamma^{\alpha} \gamma^{\beta}}{3}-\frac{\hat{p}_{\Delta} \gamma^{\alpha} p_{\Delta}^{\beta}+p_{\Delta}^{\alpha} \gamma^{\beta} \hat{p}_{\Delta}}{3 p_{\Delta}^{2}}\right)
$$

- The vertex $\Delta \rightarrow \gamma p$ with real photon is proportional to its energy $\omega=\left(W^{2}-M_{p}^{2}\right) /(2 W)$ in the special frame $\mathbf{p}_{\mathbf{4}}+\mathbf{k}=0$, where $W^{2}=\left(p_{4}+k\right)^{2}$
- A more accurate estimate for the contribution of $\left|M_{\Delta}\right|^{2}$:
$\delta_{\Delta} \approx \frac{\Gamma_{\Delta \rightarrow \gamma p}}{\Gamma_{\Delta}} \frac{\frac{d \sigma_{e \rho \rightarrow e \Delta}}{d \Omega_{3}}}{\frac{d}{d \sigma_{e \rho \rightarrow e \rho}}} \frac{1}{d \Omega_{3}} \int_{0}^{W_{\max }^{2}-M_{p}^{2}} \frac{1}{\left(M_{\Delta}^{2}-M_{p}^{2}\right)^{3}} \frac{M_{\Delta} \Gamma_{\Delta} x^{3} d x}{\left(x+M_{p}^{2}-M_{\Delta}^{2}\right)^{2}+\Gamma_{\Delta}^{2} M_{\Delta}^{2}}$
where $x=W^{2}-M_{p}^{2}$

Contribution of $\left|M_{\Delta}\right|^{2}$. Numerical

- δ_{Δ} for the Rosenbluth separation experiment (SLAC, 94). Solid lines - for matrix element $\left|M_{\Delta}\right|^{2}$ evaluated without approximations, stripes - for the approximate expression: red, orange, blue for $Q^{2}=1,2,3 \mathrm{GeV}^{2}$
- The contribution is highly suppressed for $W_{\max }^{2}<\left(M_{p}+m_{\pi}\right)^{2}$ below π production threshold.

C-odd interference $M_{\text {brem. }}{ }^{\dagger} M_{\Delta}$

- Relatively simple expression for $\delta_{b r e m, \Delta}^{\text {int }}$ can be found using soft photon approximation ($W \rightarrow M_{p}$) and saving leading terms w.r.t. $M_{\Delta}-M_{p}$.

$$
\delta_{\text {brem }, \Delta}^{\text {int }}=\frac{\int^{\prime}\left(1-\frac{x}{2 M_{\rho} \epsilon_{1}}\right) \frac{1}{4} \frac{x d x}{x+M_{\rho}^{2}} \int^{\prime} \frac{d \Omega_{\gamma}}{(2 \pi)^{2} 2} \sum 2 \operatorname{Re}\left[M_{\text {brem }, e^{\dagger}} M_{\Delta}\right]}{\sum\left|M_{1 \gamma}\right|^{2}}
$$

C-odd interference $M_{\text {brem. }}{ }^{\dagger} M_{\Delta}$

In the following p, ψ - electron momentum and scattering angle in the Breit frame; q_{v} - virtual photon momentum and $\zeta, \phi, \epsilon(k)$ - real photon emission angles and polarization vector in the special frame $\mathbf{p}_{4}+\mathbf{k}$

$$
\begin{gathered}
\sum^{-} 2 \operatorname{Re}\left[M_{b r e m, e}^{(\text {soft })} M_{\Delta}^{(1)}\right] \approx-\frac{4}{3} \frac{e^{5}}{\left(q^{2}\right)^{2}} \operatorname{Re}\left[\frac{1}{W^{2}-M_{\Delta}^{2}+i \Gamma_{\Delta} M_{\Delta}}\right] \times \\
G_{1}(0)\left(M_{p} F_{E}\left(q^{2}\right)\left(A_{1 / 2}\left(q^{2}\right)+3 A_{3 / 2}\left(q^{2}\right)\right)+\frac{\left(-q^{2}\right)}{M_{\Delta}} F_{M}\left(q^{2}\right) S_{1 / 2}\left(q^{2}\right)\right) \\
\left(p^{2} \sin \psi\right)\left(\frac{\omega}{M_{\Delta}} \frac{q_{v}}{M_{\Delta}}\left[\frac{p_{3, \mu}}{\left(p_{3} k\right)}-\frac{p_{1, \mu}}{\left(p_{1} k\right)}\right]\right) \\
{\left[\frac{\epsilon_{+1}^{\mu}(k)-\epsilon_{-1}(k)}{\sqrt{2}} \cos \phi+\frac{\epsilon_{+1}^{\mu}(k)+\epsilon_{-1}^{\mu}(k)}{\sqrt{2}} i \sin \phi \cos \zeta\right]}
\end{gathered}
$$

- Futher integration within the angular and energy cuts applied in the experiment at the VEPP-3 is not easy. It was done numerically
- Using the approximate expression as well as $M_{e}{ }^{\dagger} M_{\Delta}$ without approximations ensures that $\delta_{\text {brem }, \Delta}<0.1 \%$

Summary

- We consider a potential contribution of $\Delta(1232)$ resonance to real radiative corrections for unpolarized elastic electron-proton scattering
- The effect is found to be small for the past experiments on Rosenbluth separation as well as for the recent experiment at the VEPP-3 storage ring to investigate the two-photon exchange effects

