Рнотом 2015

Double scattering production of two ρ^0 mesons and four pions in ultraperipheral heavy ion collisions

Primary author: Antoni Szczurek ^{1,2} Co-author (presenter): Mariola Kłusek-Gawenda ¹

> ¹Institute of Nuclear Physics PAS Kraków ²University of Rzeszów

Photon 2015

M. KŁUSEK-GAWENDA

INTRODUCTION

EPA

THEORY PREDICTIONS

Photoproduction of ρ^0 mesons

SINGLE ρ^0 MESON PRODUCTION

DOUBLE-SCATTERING MECHANISM

PREDICTIONS

CONCLUSION

M. KŁUSEK-GAWENDA (INP PAS KRAKÓW)

Рнотом 2015

MAIN GOAL -

Double-scattering mechanism

PHOTON 2015

M. KŁUSEK-

INTRODUCTION

Equivalent Photon Approximation

b

The strong electromagnetic field is a source of photons that can induce electromagnetic reactions in ion-ion collisions.

ULTRAPERIHERAL COLLISIONS

 $b > R_{min} = R_1 + R_2$

Photon 2015

M. Kłusek-Gawenda

INTRODUCTION

EPA

THEORY

PREDICTIONS

Photoproduction of ρ^0 mesons

Single ρ^0 meson production Smearing of ρ^0 mass

DOUBLE-SCATTERING MECHANISM

PREDICTIONS

Conclusion

NUCLEAR CROSS SECTION

$$\sigma_{A_{1}A_{2}\to A_{1}A_{2}X} = \int d\omega_{1} d\omega_{2} n(\omega_{1})n(\omega_{2})\sigma_{\gamma\gamma\to X}(\omega_{1},\omega_{2})$$

$$= \dots$$

$$= \int N(\omega_{1},\mathbf{b}_{1}) N(\omega_{2},\mathbf{b}_{2})S_{abs}^{2}(\mathbf{b})$$

$$\times \sigma_{\gamma\gamma\to X} \left(\sqrt{S_{A_{1}A_{2}}}\right)$$

$$\times 2\pi b db d\overline{b}_{x} d\overline{b}_{y} \frac{W_{\gamma\gamma}}{2} dW_{\gamma\gamma} dY_{X} \qquad (2)$$

Photon 2015

M. KŁUSEK-GAWENDA

NTRODUCTION

EPA

(1)

THEORY

PHOTOPRODUCTION OF ρ^0 MESONS SINGLE ρ^0 MESON PRODUCTION

DOUBLE-SCATTERING MECHANISM

PREDICTIONS

ELEMENTARY CROSS SECTION

Reference:

M. Kłusek, W. Schäfer and A. Szczurek, Phys.Lett. **B674** (2009) 92 "Exclusive production of $\rho^0 \rho^0$ pairs in $\gamma\gamma$ collisions at RHIC"

+ back-up slide

M. KŁUSEK-GAWENDA (INP PAS KRAKÓW)

3 ▶ ∢ 3

PHOTON 2015

M. Kłusek-

PREDICTIONS

 $N(\omega_{1/2}, \mathbf{b}_{1/2})$ depends on the form factor

Photon 2015

M. KŁUSEK-GAWENDA

NTRODUCTION

EPA

realistic

monopole

THEORY

PREDICTIONS

PHOTOPRODUCTION OF ρ^0 MESONS

Single ρ meson production Smearing of ρ^0 mass

DOUBLE-SCATTERING MECHANISM

PREDICTIONS

CONCLUSION

A (10) × A (10) × A (10)

э

Photoproduction of ρ^0 mesons

• Single ρ^0 meson production

Double-scattering mechanism

Photon 2015

M. KŁUSEK-GAWENDA

INTRODUCTION

EPA

THEORY

Photoproduction of ρ^0 mesons

Single ρ^0 meson production

DOUBLE-SCATTERING MECHANISM

PREDICTIONS

 $\gamma N \rightarrow \rho^0 N$

PARAMETERS FIXED TO DESCRIBE HERA DATA we expect: $\frac{d\sigma(\gamma n \rightarrow \rho^0 n)}{dt} \approx \frac{d\sigma(\gamma p \rightarrow \rho^0 n)}{dt}$ Рнотом 2015

M. Kłusek-Gawenda

NTRODUCTION

EPA

THEORY PREDICTIONS

PHOTOPRODUCTION OF ρ^0 MESONS SINGLE ρ^0 MESON PRODUCTION SMEATING OF ρ^0 MASS

DOUBLE-SCATTERING MECHANISM

PREDICTIONS

CONCLUSION

イロト イポト イヨト イヨト

SINGLE ρ^0 MESON PRODUCTION

10/28

PHOTON 2015

SMEARING OF ρ^0 MASS

$$\frac{\mathrm{d}\sigma_{AA\to AA\rho_0}}{\mathrm{d}m\,\mathrm{d}y} = f(m)\frac{\mathrm{d}\sigma_{AA\to AA\rho_0}\left(y,m\right)}{\mathrm{d}y}$$

$$f(m) = \frac{|\mathcal{A}(m)|^2 N_{orm}}{\int |\mathcal{A}(m)|^2 N_{orm} \mathrm{d}n}$$

$$0 = \frac{|\mathcal{A}(m)|^2 N_{orm}}{\int |\mathcal{A}(m)|^2 N_{orm} dm}$$

$$\int N_{orm} |\mathcal{A}(m)|^2 \, \mathrm{d}m = 1$$

M. KŁUSEK-

(6)

(7)

(8)

Smearing of ρ^0 mass

Drell-Söding contribution:

$$\mathcal{A}(m) = \mathcal{A}_{\mathcal{BW}} \frac{\sqrt{mm_{\rho^0} \Gamma_{\rho^0}(m)}}{m^2 - m_{\rho^0}^2 + im_{\rho^0} \Gamma_{\rho^0}(m)} + \mathcal{B}_{\pi\pi} \qquad (9)$$
running width: $\Gamma_{\rho^0}(m) = \Gamma_{\rho^0} \frac{m_{\rho^0}}{m} \left(\frac{m^2 - 4m_{\pi}^2}{m_{\rho^0}^2 - 4m_{\pi}^2}\right)^{3/2} \qquad (10)$

Smearing of ρ^0 mass

$$\mathcal{A}(m) = \mathcal{A}_{\mathcal{B}\mathcal{W}} \frac{\sqrt{mm_{\rho^0} \Gamma_{\rho^0}(m)}}{m^2 - m_{\rho^0}^2 + im_{\rho^0} \Gamma_{\rho^0}(m)} + \mathcal{B}_{\pi\pi}$$
$$\Gamma_{\rho}(m) = \Gamma_{\rho} \frac{m_{\rho^0}}{m^2} \left(\frac{m^2 - 4m_{\pi}^2}{m^2}\right)^{3/2}$$

$$\Gamma_{
ho^0}(m) = \Gamma_{
ho^0} rac{m_{
ho^0}}{m} \left(rac{m^2 - 4m_\pi^2}{m_{
ho^0}^2 - 4m_\pi^2}
ight)^{-1}$$

Photon 2015

M. KŁUSEK-GAWENDA

INTRODUCTION

EPA

THEORY PREDICTION

Photoproduction of ρ^0 mesons

Single ρ^0 meson production

Smearing of ho^0 mass

DOUBLE-SCATTERING MECHANISM

PREDICTIONS

CONCLUSION

12/28

Parameter	ZEUS	STAR	ALICE
<i>m</i> ₀ [GeV]	0.77 ± 0.002	0.775 ± 0.003	0.761 ± 0.0023
Γ _ρ ₀ [GeV]	0.146 ± 0.003	0.162 ± 0.007	0.1502 ± 5.5
$\left \frac{\mathcal{B}_{\pi\pi}}{\mathcal{A}_{\mathcal{B}\mathcal{W}}} \right $ [GeV ^{-1/2}]	0.669	$\textbf{0.89} \pm \textbf{0.08}$	0.5 ± 0.04
<i>m</i> [GeV]	(0.55 – 1.2)	(0.5 - 1.1)	(0.28 - 1.512)

(日)

3

Smearing of ρ^0 mass

PHOTON 2015

M. KŁUSEK-

SINGLE ρ^0 MESON PRODUCTION

Photon 2015

M. KŁUSEK-GAWENDA

INTRODUCTION

EPA

THEORY

Photoproduction of ρ^0 mesons

Single ρ^0 meson production Smearing of ρ^0 mas:

DOUBLE-SCATTERING MECHANISM

PREDICTIONS

SINGLE ρ^0 MESON PRODUCTION

GM	FSZ	KN	Our result		Experimental data
			$m_{ ho^0} = const$	$m_{ ho^0} eq const$	
$\sqrt{s_{NN}} = 130 \text{ GeV}; \text{ full } y_{\rho^0} $				STAR	
	490		359	407	$370\pm170\pm80$
$\sqrt{s_{NN}} = 130 \text{ GeV}; y_{o^0} < 1$				STAR	
	140		130	143	$106\pm5\pm14$
$\sqrt{s_{NN}} = 200 \text{ GeV}; \text{ full } y_{\rho^0} $					STAR
876	934	590	590	646	$391\pm18\pm55$
$\sqrt{s_{NN}} = 2.76 \text{ TeV}; \text{ full } y_{\rho^0} $			ALICE		
			3309	3405	$4200 \pm 100^{+500}_{-600}$
$\sqrt{s_{ m NN}} = 2.76 \; { m TeV}; y_{ ho^0} < 0.5$				ALICE	
			371	380	$425 \pm 10^{+42}_{-50}$

GM - V.P. Gonçalves and M.V.T. Machado, "The QCD pomeron in ultraperipheral heavy ion collisions. IV. Photonuclear production of vector mesons", Eur. Phys. J. C40 (2005) 519,
FSZ - L. Frankfurt, M. Strikman and M. Zhalov, "Signals for black body limit in coherent ultraperipheral heavy ion collisions", Phys. Lett. B537 (2002) 51,
KN - S. Klein and J. Nystrand, "Exclusive vector meson production in relativistic heavy ion collisions", Phys. Rev. C60 (1999) 014903

Photon 2015

M. KŁUSEK-GAWENDA

INTRODUCTION

EPA

THEORY

PREDICTIONS

Photoproduction of ρ^0 mesons

SINGLE ρ^0 meson production

Smearing of ho^0 mass

DOUBLE-SCATTERING MECHANISM

PREDICTIONS

CONCLUSION

M. KŁUSEK-GAWENDA (INP PAS KRAKÓW)

DOUBLE-SCATTERING MECHANISM

 $(\rho^0$'s have negligibly small transverse momenta).

PHOTON 2015

M. KŁUSEK-GAWENDA

INTRODUCTION

EPA

THEORY PREDICTION:

Photoproduction of ρ^0 mesons

Single ρ^0 meson production Smearing of ρ^0 mas

DOUBLE-SCATTERING MECHANISM

PREDICTIONS

CONCLUSION

M. KŁUSEK-GAWENDA (INP PAS KRAKÓW)

PREDICTIONS

DOUBLE-SCATTERING MECHANISM VS $\gamma\gamma$ FUSION

Photon 2015

M. KŁUSEK-GAWENDA

NTRODUCTION

EPA

THEORY

Photoproduction of ρ^0 mesons

Single ρ^0 meson production Smearing of ρ^0 mass

DOUBLE-SCATTERING MECHANISM

PREDICTIONS

PREDICTIONS

$\pi^+\pi^-\pi^+\pi^-$ production @ RHIC

Photon 2015

M. KŁUSEK-GAWENDA

INTRODUCTION

EPA

THEORY

PREDICTIONS

Photoproduction of ρ^0 mesons

Single ρ^0 meson production Smearing of ρ^0 mass

DOUBLE-SCATTERING MECHANISM

PREDICTIONS

CONCLUSION

18/28

M. KŁUSEK-GAWENDA (INP PAS KRAKÓW)

Рнотом 2015

PREDICTIONS

$\pi^+\pi^-\pi^+\pi^-$ production @ LHC

Photon 2015

M. KŁUSEK-GAWENDA

NTRODUCTION

EPA

THEORY PREDICTION

Photoproduction of ρ^0 mesons

Single ρ^0 meson production

DOUBLE-SCATTERING MECHANISM

PREDICTIONS

CONCLUSION

M. KŁUSEK-GAWENDA (INP PAS KRAKÓW)

NOVOSIBIRSK, 15-19 JUNE 2015 19 / 28

COMPARISON OF THE MECHANISMS

Energy	mechanism	$\sigma_{tot} \text{ [mb]}$
RHIC ($\sqrt{s_{NN}} = 200 \text{ GeV}$)	double-scattering	1.6
- -	$ ho^{0} ho^{0}$ in $\gamma\gamma$ fusion	0.1
	$\pi^+\pi^-\pi^+\pi^-$ in $\gamma\gamma$ fusion	0.1

Photon 2015

M. KŁUSEK-GAWENDA

INTRODUCTION

EPA

THEORY

PHOTOPRODUCTION OF ρ^0 mesons

SINGLE ρ^0 meson production

Smearing of ho^0 mass

DOUBLE-SCATTERING MECHANISM

PREDICTIONS

CONCLUSION

Reference:

M. Kłusek-Gawenda and A. Szczurek, Phys. Rev. **C89** (2014) 024912 "Double-scattering mechanism in the exclusive $AA \rightarrow AA\rho^0\rho^0$ reaction in ultrarelativistic collisions",

M. KŁUSEK-GAWENDA (INP PAS KRAKÓW)

Рнотом 2015

NOVOSIBIRSK, 15-19 JUNE 2015 20 / 28

TWO-PION PRODUCTION

PHOTON 2015

M. Kłusek-Gawenda

NTRODUCTION

EPA

THEORY PREDICTIONS

Photoproduction of ρ^0 mesons

SINGLE ρ^0 MESON PRODUCTION SMEARING OF ρ^0 MAS

DOUBLE-SCATTERING MECHANISM

PREDICTIONS

CONCLUSION

Reference:

M. Kłusek-Gawenda and A. Szczurek, Phys. Rev. **C87** (2013) 054908 " $\pi^+\pi^-$ and $\pi^0\pi^0$ pair production in photon-photon and in ultraperipheral ultrarelativistic heavy ion collisions",

M. KŁUSEK-GAWENDA (INP PAS KRAKÓW)

CONCLUSION

- Impact parameter space approach
- Smearing of ρ^0 meson
- Good description of STAR and ALICE data for single- $\rho^0(770)$ production

do / dM_{x'x'} ($|Y_{\pi'\pi'}|<0.5$) [b/GeV] 0

10-2

10 0.2 0.4 0.6 0.8

M. KŁUSEK-GAWENDA (INP PAS KRAKÓW)

from γγ→π⁺π

Soding(res+co

PHOTON 2015

M. KŁUSEK-

OF ρ^0 MESONS

CONCLUSION

NOVOSIBIRSK, 15-19 JUNE 2015

1.4 1.6 M_{π⁺π⁻} [GeV]

Pb-Pb; vs_NN=2.76 TeV

CONCLUSIONS

- Comparison of four-pion production via ρ⁰ρ⁰ production
 - $\gamma\gamma$ fusion
 - nuclear double-photoproduction (very large) with STAR data
- Missing contributions (?)
 - ρ⁰(1450)
 - ρ⁰(1700)
- Multiple Coulomb excitations associated with \(\rho^0\rho^0\) production may cause additional excitation of one or both nuclei to the giant resonance region

(can be calculated)

Reference:

M. Kłusek-Gawenda, M. Ciemała, W. Schäfer and A. Szczurek, Phys. Rev. **C89** (2014) 054907,

"Electromagnetic excitation of nuclei and neutron evaporation in ultrarelativistic ultraperipheral heavy ion collisions"

More details: PhD thesis http://www.ifj.edu.pl/msd/rozprawy_dr/rozpr_Klusek.pdf

M. KŁUSEK-GAWENDA

INTRODUCTION

EPA

THEORY PREDICTIONS

Photoproduction of ρ^0 mesons

SINGLE ρ^0 MESON PRODUCTION

DOUBLE-SCATTERING MECHANISM

PREDICTIONS

CONCLUSION

M. KŁUSEK-GAWENDA (INP PAS KRAKÓW)

Back-up slides

Photon 2015

M. KŁUSEK-GAWENDA

NTRODUCTION

EPA

THEORY PREDICTION

Photoproduction of ρ^0 mesons

SINGLE ρ^0 meson production

Smearing of ho^0 mass

DOUBLE-SCATTERING MECHANISM

PREDICTIONS

CONCLUSION

M. KŁUSEK-GAWENDA (INP PAS KRAKÓW)

Photon 2015

イロト イポト イヨト イヨト

NOVOSIBIRSK, 15-19 JUNE 2015 24 / 28

3

CONCLUSION

Elementary cross section $\gamma\gamma \rightarrow \rho^0 \rho^0$

$$\frac{d\sigma^{-\varphi\gamma}}{\gamma\gamma \to \rho^{0}\rho^{0}}_{d\hat{t}} = \frac{1}{16\pi\hat{s}} \left| \mathcal{M}_{\gamma\gamma \to \rho^{0}\rho^{0}} \left(\hat{s}, \hat{t}; q_{1}, q_{2} \right) \right|^{2}$$
(12)

$$\mathcal{M}_{\gamma\gamma\to\rho^0\rho^0}\left(\hat{\mathbf{s}},\hat{\mathbf{f}};q_1,q_2\right) = C_{\gamma\to\rho^0}C_{\gamma\to\rho^0}\mathcal{M}_{\rho^0*\,\rho^0*\,\to\rho^0\rho^0}\left(\hat{\mathbf{s}},\hat{\mathbf{f}};q_1,q_2\right)$$
(13)

$$\mathcal{M}_{\rho^{0*}\rho^{0*} \to \rho^{0}\rho^{0}}\left(\hat{s},\hat{t};q_{1},q_{2}\right) = \left(\eta_{\mathbf{P}}\left(\hat{s},\hat{t}\right)C_{\mathbf{P}}\left(\frac{\hat{s}}{s_{0}}\right)^{\alpha_{\mathbf{P}}\left(\hat{t}\right)-1} + \eta_{\mathbf{R}}\left(\hat{s},\hat{t}\right)C_{\mathbf{R}}\left(\frac{\hat{s}}{s_{0}}\right)^{\alpha_{\mathbf{R}}\left(\hat{t}\right)-1}\right) \times \hat{s}F\left(\hat{t};q_{1}^{2}\approx0\right)F\left(\hat{t};q_{2}^{2}\approx0\right)$$
(14)

Photon 2015

M. KŁUSEK-GAWENDA

INTRODUCTION

EPA

THEORY

PREDICTIONS

PHOTOPRODUCTION OF ρ^0 MESONS Single ρ^0 meson production

SMEARING OF ρ^0 mass

DOUBLE-SCATTERING MECHANISM

PREDICTIONS

CONCLUSION

イロト イポト イヨト イヨト

FORM FACTOR

REALISTIC F_{em} $F(q) = \frac{4\pi}{q} \int \rho(r) \sin(qr) r dr$

MONOPOLE F_{em} $F(q^2) = \frac{\Lambda^2}{\Lambda^2 + q^2}$

$$\Lambda = \sqrt{\frac{6}{< r^2 >}}$$

• ¹⁹⁷
$$Au \Rightarrow \sqrt{\langle r^2 \rangle} = 5.3$$
 fm,
 $\Lambda = 91$ MeV,

< ∃> < ∃>

In the literature: $\Lambda = (80 - 90) \text{ GeV}$

Photon 2015

M. Kłusek-Gawenda

NTRODUCTION

EPA

THEORY

Photoproduction of ρ^0 mesons

Single ρ^0 meson production Smearing of ρ^0 mass

DOUBLE-SCATTERING MECHANISM

PREDICTIONS

CONCLUSION

A semi-classical model for $\gamma A \rightarrow \rho^0 A$ reaction

$$\sigma_{\gamma A \to \rho^{0} A} = \frac{d\sigma_{\gamma A \to \rho^{0} A}(t=0)}{dt} \int_{-\infty}^{t_{max}} dt |F_{A}(t)|^{2}$$
$$\frac{d\sigma_{\gamma A \to \rho^{0} A}(t=0)}{dt} = \frac{\alpha_{em}\sigma_{tot}^{2}(\rho^{0} A)}{4t^{2}}$$

quasi-Glauber (classical Glauber):

$$\sigma_{tot}\left(\rho^{0}A\right) = \int d^{2}\mathbf{r} \left(1 - \exp\left(-\sigma_{tot}\left(\rho^{0}p\right) T_{A}(\mathbf{r})\right)\right)$$

quantum mechanical Glauber:

 $\frac{\mathrm{d}\sigma_{\rho^0\rho\to\rho^0\rho}(t=0)}{\mathrm{d}t} = \frac{f_{\rho^0}^2}{4\pi\alpha_{em}}\frac{\mathrm{d}\sigma_{\gamma\rho\to\rho^0\rho}(t=0)}{\mathrm{d}t}$

$$\sigma_{tot}^{qm} \left(\rho^{0} A\right) = 2 \int d^{2} \mathbf{r} \left(1 - \exp\left(-\frac{1}{2}\sigma_{tot} \left(\rho^{0} p\right) T_{A}(\mathbf{r})\right)\right)$$

nucleus thickness:
$$T_{A}(\mathbf{r}) = \int dz \rho_{A} \left(\sqrt{|\mathbf{r}|^{2} + z^{2}}\right)$$

$$\sigma_{tot}^{2} \left(\rho^{0} p\right) = 16\pi \frac{d\sigma_{\rho^{0} \rho \to \rho^{0} \rho}(t=0)}{dt}$$

 $\frac{\mathrm{d}\sigma_{\gamma\rho\to\rho^{0}\rho}(t=0)}{\mathrm{d}t} = B_{\rho^{0}}\left(XW^{\epsilon} + YW^{-\eta}\right)_{\alpha} \leftarrow \mathsf{HERA} \mathsf{data}$

PHOTON 2015

M. KŁUSEK-GAWENDA

NTRODUCTION

EPA

THEORY PREDICTIONS

Photoproduction of ρ^0 mesons

Single ρ^0 meson production Smearing of ρ^0 mas

DOUBLE-SCATTERING MECHANISM

PREDICTIONS

CONCLUSION

M. KŁUSEK-GAWENDA (INP PAS KRAKÓW)

VDM)

$AA \rightarrow AA\rho^0$ vs Glauber model

PHOTON 2015

M. KŁUSEK-