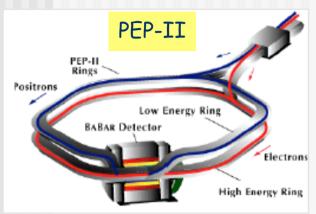
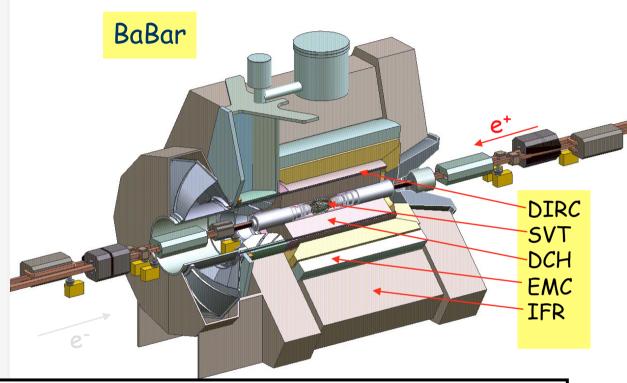
Low-energy hadronic cross sections measurements at BaBar, and implication for the g-2 of the muon


E.Solodov for the BaBar collaboration

Budker INP SB RAS, Novosibirsk, Russia


PHOTON2015, Novosibirsk, Russia

PEP-II e+e- collider, Babar detector

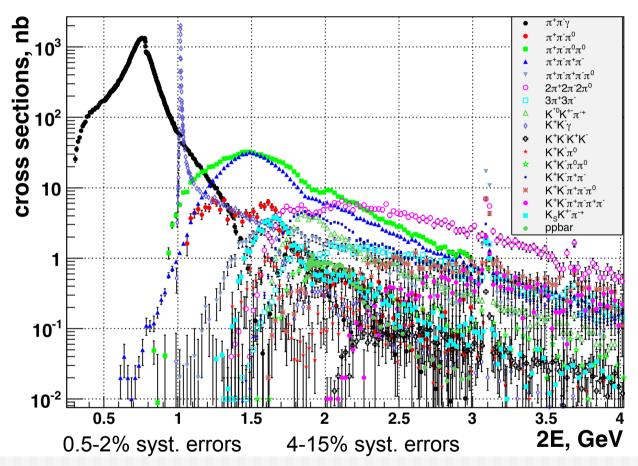
E₊ = 3.1 GeV, E₋ = 9 GeV

 $E_{CM} = M(Y(4S))=10.6 GeV$ 2000 - 2008 yrs $\Delta L = 500 fb^{-1}$ $N(B) = 10^9$

$$\frac{d\sigma(s,x)}{dxd(\cos\theta)} = W(s,x,\theta) \cdot \sigma_0(s(1-x)),$$

$$W(s,x,\theta) = \frac{\alpha}{\pi x} \left(\frac{2 - 2x + x^2}{\sin^2 \theta} - \frac{x^2}{2} \right), \quad x = \frac{2E_{\gamma}}{\sqrt{s}}$$

 θ - photon polar angle in c.m.

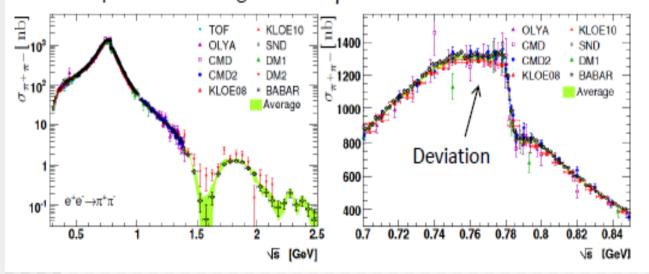

ISR study at BaBar

- ISR at BaBar gives competitive (even dominates!) statistics
- BaBar has excellent capability for ISR study
- Many major hadronic processes have been studied

published

```
e^+e^- \rightarrow \pi^+\pi^-
                                                                                      PR D 86 (2012) 032013, PR L 103 (2009) 231801
e^+e^- \rightarrow K^+K^-
                                                                                                                  PR D 88, (2013) 032013
e^+e^- \to \phi f_0(980)
                                                                                       PR D 74 (2006) 091103, PR D 76 (2007) 012008
e^{+}e^{-} \rightarrow \pi^{+}\pi^{-}\pi^{0}
                                                                                                                   PR D 70 (2004) 072004
e^+e^- \to K^+K^-\eta, K^+K^-\pi^0, K_s^0K^{\pm}\pi^{\mp}
                                                                                       PR D 77 (2008) 092002, PR D 71 (2005) 052001
e^{+}e^{-} \rightarrow 2(\pi^{+}\pi^{-})
                                                                                       PR D 85 (2012) 112009, PR D 76 (2007) 012008
e^+e^- \to K^+K^-\pi^0\pi^0, K^+K^-\pi^+\pi^-, 2(K^+K^-)
                                                                                       PR D 86 (2012) 012008, PR D 76 (2007) 012008
e^{+}e^{-} \rightarrow K_{S}^{0}K_{L}^{0}, K_{S}^{0}K_{L}^{0}\pi^{+}\pi^{-}, K_{S}^{0}K_{S}^{0}\pi^{+}\pi^{-}, K_{S}^{0}K_{S}^{0}K^{+}K^{-}
                                                                                                                PR D 89 (2014) 092002
e^+e^- \rightarrow 2(\pi^+\pi^-)\pi^0, 2(\pi^+\pi^-)\eta, K^+K^-\pi^+\pi^-\pi^0, K^+K^-\pi^+\pi^-\eta PR D 76 (2007) 092005
e^+e^- \rightarrow 3(\pi^+\pi^-), 2(\pi^+\pi^-\pi^0), 2(\pi^+\pi^-)K^+K^-
                                                                                                                 PR D 73 (2006) 052003
e^+e^- \to p\bar{p} \text{ (small } \sqrt{s}\text{)}
                                                                                       PR D 87 (2013) 092005, PR D 73 (2006) 012005
e^+e^- \to p\bar{p} \text{ (large } \sqrt{s}\text{)}
                                                                                                                   PR D 88 (2013) 072009
e^+e^- \to \Lambda \bar{\Lambda}, \Lambda \bar{\Sigma^0}, \Sigma^0 \bar{\Sigma^0}
                                                                                                                   PR D 76 (2007) 092006
e^+e^- \rightarrow c\bar{c} \rightarrow \dots
```

BaBar measurements summary


To calculate R in the energy range 1-2 GeV the processes $\pi^+\pi^-3\pi^0,\,\pi^+\pi^-4\pi^0,\,K_SK_L,\,K_SK_L\pi^+\pi^-,\,K_SK^+\,\pi^-\pi^0$ are under study: $\pi^+\pi^-2\pi^0$ will come soon. Work is in progress for $K_SK_L\pi^0\pi^0,\,K_SK_L\pi^0$

BaBar measured: $e^+e^- \rightarrow \pi^+\pi^-$

Motivation: dominance of the E<1GeV region, accessed through $\pi^+\pi^-$

Features of the cross section distribution

- Includes possible FSR
- Dominated by ρ(770) resonance
- ρ-ω interference
- Dip at 1.6GeV: interference between ρ' and ρ"
- Dip at 2.2GeV: higher mass ρ state

LO Hadr.,0.28-1.8 GeV

Babar

α_μ=(514.1±3.8) 10⁻¹⁰

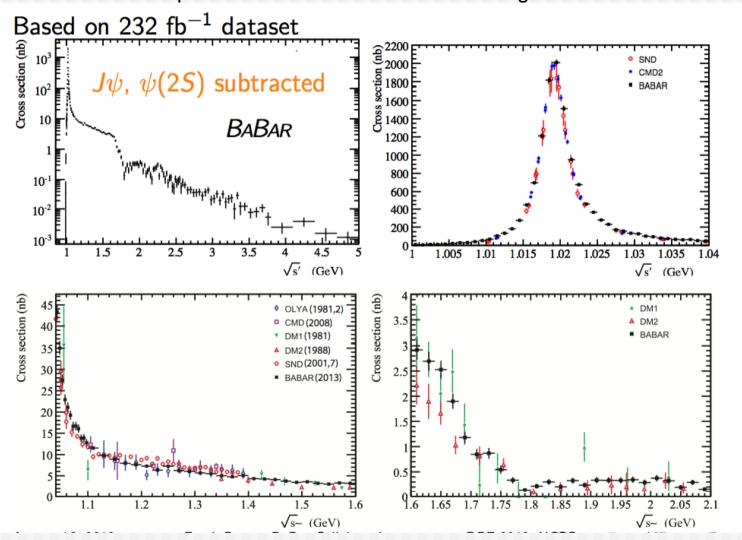
all e⁺e⁻

α_μ=(505.8±3.0) 10⁻¹⁰

Systematic uncertainties at the ρ region

BABAR: 0.5%

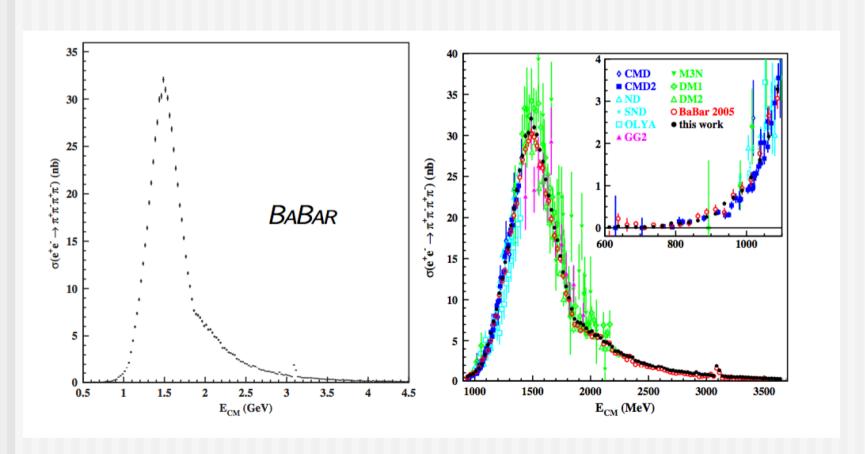
CMD2: 0.8%


SND: 1.5%

KLOE: 0.8%

BaBar measured: $e^+e^- \rightarrow K^+K^-$

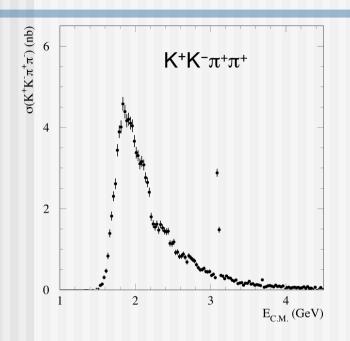
Published Phys. Rev. D 88, 032013 (2013)

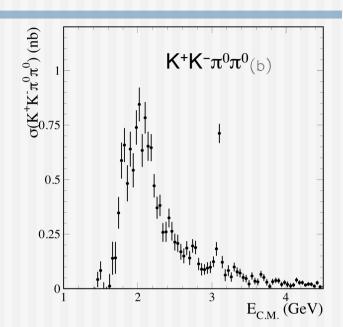

Our result is more precise than the current world average

BaBar updated: $e^+e^- \rightarrow \pi^+\pi^-\pi^+\pi^-$

Published PRD 85 112009 (2012)

Based on 454 fb⁻¹ dataset (statistical uncertainties are shown)
Our result is more precise than the current world average (<3% systematic error)

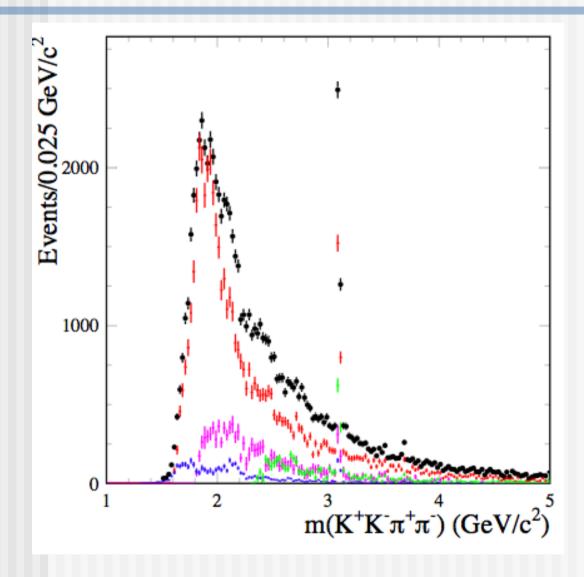

Contribution of missing channels to a_{μ}


SM-to-experiment comparison [in units 10^{-10}] **QED** $116\ 584\ 71.81\ \pm0.02$ 690.30 ± 5.26 Leading hadronic vacuum polarization (VP) -10.03 ± 0.11 Sub-leading hadronic vacuum polarization Hadronic light-by-light 11.60 ± 3.90 Weak (incl. 2-loops) 15.32 ± 0.18 Theory 11659179.00 ± 6.46 **Experiment** 11659208.00 ± 6.30 Exp - theory29.00 \pm 9.03 $a_{\mu} (\sqrt{s} < 1.8 \text{ GeV}) \text{ K}^{+}\text{K}^{-}$ $2(\pi^{+} \pi^{-})$ $3(\pi^+ \pi^-)$ $2(\pi^+ \pi^- \pi^0)$ without BABAR $21.63 \pm 0.70 \ 13.35 \pm 0.90 \ 0.10 \pm 0.10$ 1.42 ± 0.30 with BABAR $22.95 \pm 0.26 \quad 13.64 \pm 0.36 \quad 0.11 \pm 0.02$ 0.89 ± 0.09

Missing channels contribute 5.98 ± 0.42 or 12.46 ± 0.76 if $\sqrt{s} < 2.0$ GeV

Contribution from KK π , KK 2π , $2\pi 3\pi^0$, $2\pi 4\pi^0$, $(7\pi, 8\pi)$... added using iso-spin relations (in particular, using measured K+K- π + π - ($\pi^0\pi^0$) channels)

The cross section comparison – BaBar data



Naively expect: $N(K^+K^-\pi^+\pi^-) = 2 N(K^+K^-\pi^0\pi^0)$

Many intermediate states break the relation.

Study of intermediate states is important!

Decomposition of $K^+K^-\pi^+\pi^-$ mass spectrum

 $K^+K^-\pi^+\pi^ K^{*0}(892)K\pi$ $K^+K^-\rho(770)$ $\phi\pi^+\pi^ K_2^{*0}(1430)K\pi$

Tables with cross sections (corrected for BF) are provided

Phys. Rev. D 86, 012008 (2012)

$e^{+}e^{-} \rightarrow K_{S}K_{L}, K_{S}K_{L}\pi^{+}\pi^{-}, K_{S}K_{S}\pi^{+}\pi^{-}(K^{+}K^{-})$

We present (with more details) results on the study of the processes:

$$e^{+}e^{-} \rightarrow K_{S}K_{L}$$

$$e^{+}e^{-} \rightarrow K_{S}K_{L}\pi^{+}\pi^{-}$$

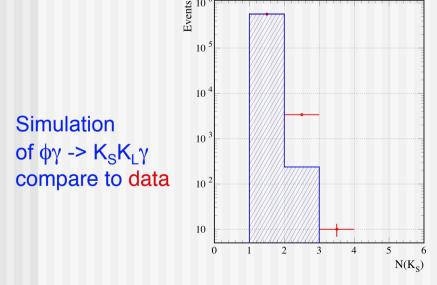
$$e^{+}e^{-} \rightarrow K_{S}K_{S}\pi^{+}\pi^{-}$$

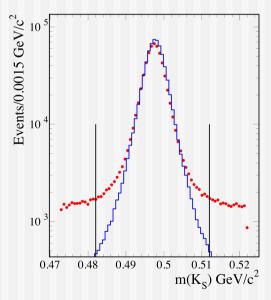
$$e^{+}e^{-} \rightarrow K_{S}K_{S}K^{+}K^{-}$$

Published Phys. Rev. D 89, 092002 (2014)

And new (preliminary) results on the process

$$e^{+}e^{-} \to K_{S}K^{-+}\pi^{+-}\pi^{0}$$

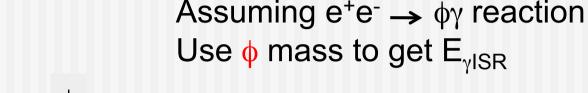

ready for publication

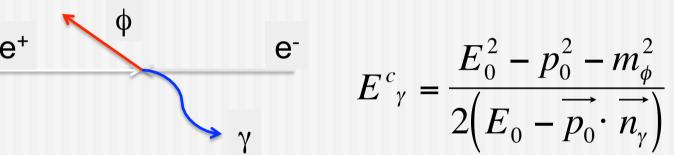

Based on 469 fb⁻¹ integrated luminosity.

K_S selection (in $\pi^+\pi^-$ decay)

Loop over all K_S candidates with ISR photon with $E_{\gamma} > 3$ GeV, and select events with:

- Good quality K_s coming from IP
- No electron ID for either charged track

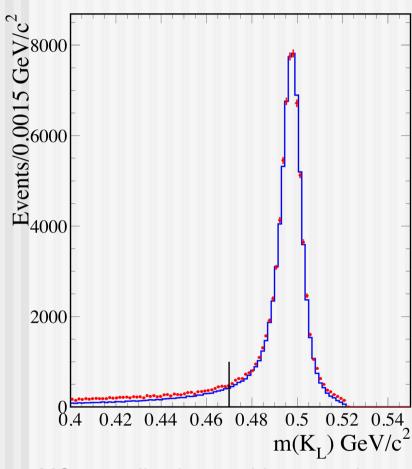

Dominated by $\phi \gamma \rightarrow K_S K_I \gamma$ process if require NO additional tracks from IP


$e^+e^- \rightarrow \phi \gamma \rightarrow K_S K_L \gamma$ (without K_L detection)

$$E_0 = E^+ + E^-$$

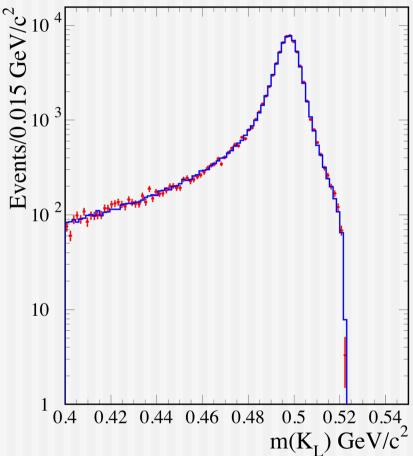
$$\overrightarrow{p_0} = \overrightarrow{p}^+ + \overrightarrow{p}^-$$

$$\overrightarrow{p_\gamma} = \overrightarrow{n} E_\gamma$$

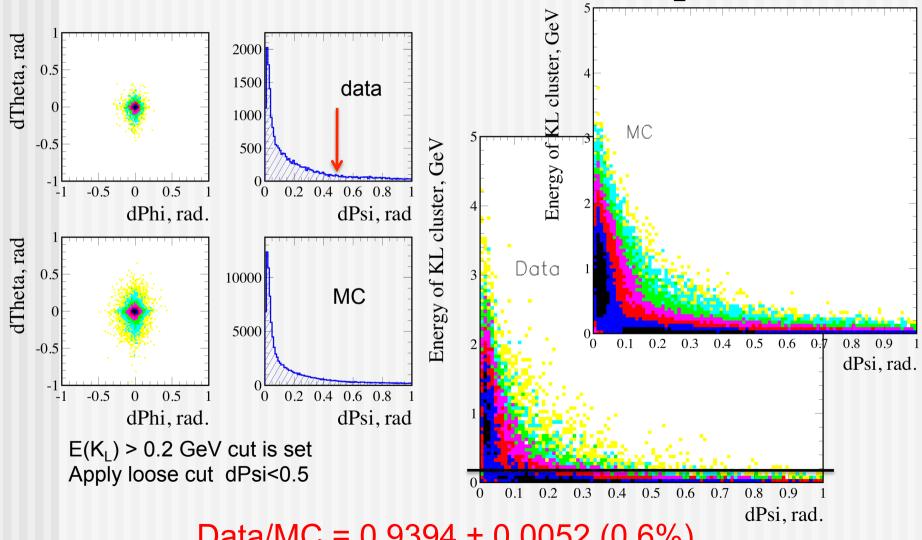


Using energy-momentum conservation and detected K_S we determine K_L mass and direction:

$$m^{2}(K_{L}) = \left(E^{+} + E^{-} - E_{\gamma}^{c} - E_{K_{S}}\right)^{2} - \left(p^{+} + p^{-} - p_{\gamma}^{c} - p_{K_{S}}\right)^{2}$$

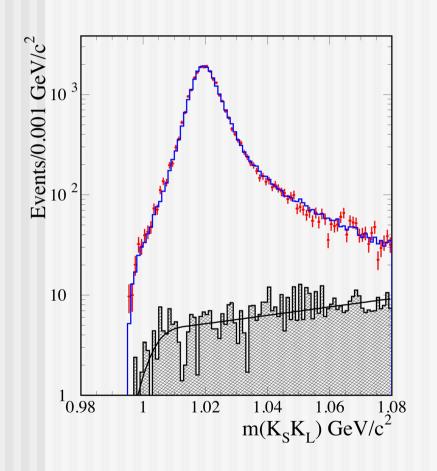

Using this events we can study K_L detection.

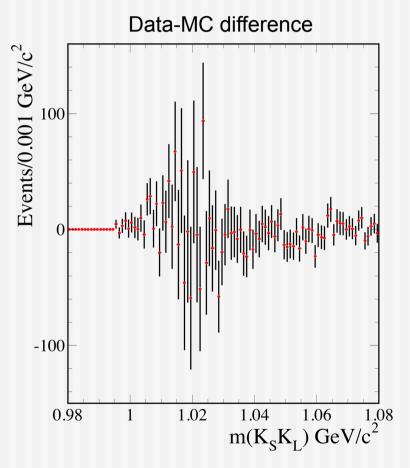
MC normalized to two bins at peak


Very low background!

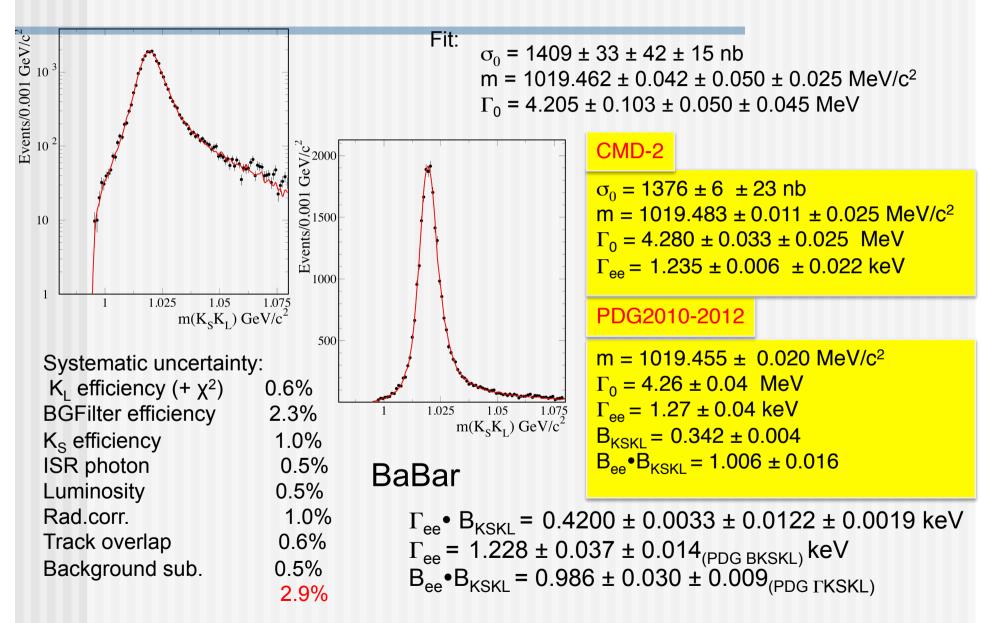
After background subtraction (5.6%) we have 81012±285 events (447434±669 MC). We estimate ~0.5% systematic error for background subtraction uncertainty.

How K₁ cluster in Calorimeter looks like?

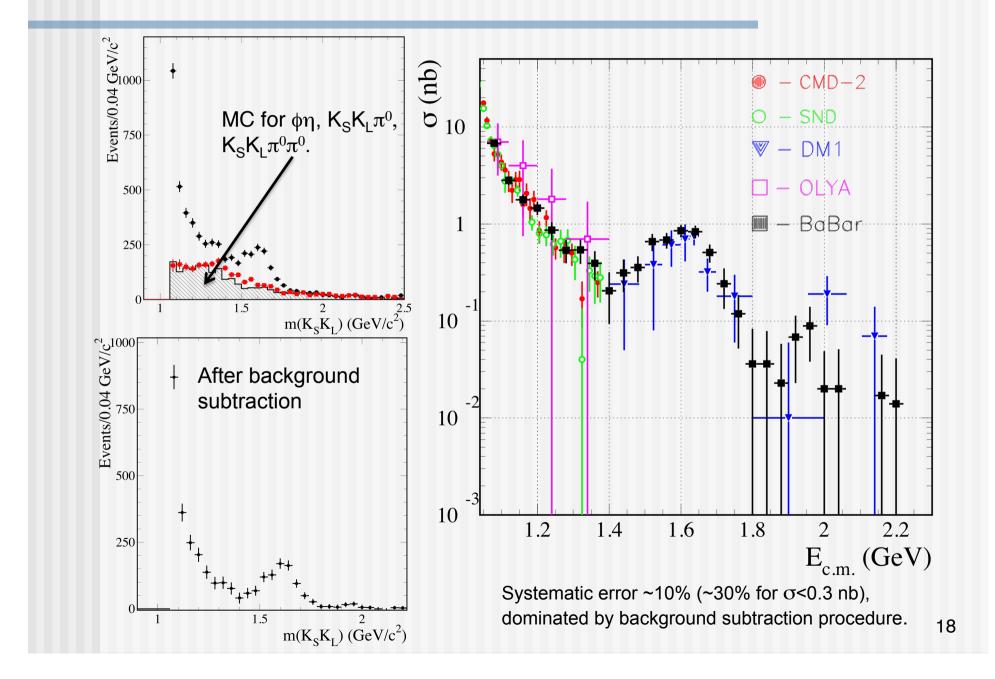

Search for EMC cluster closest to K₁ direction:

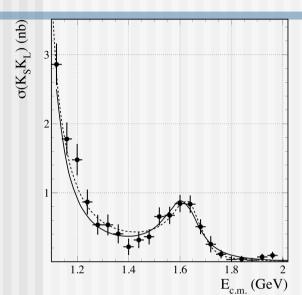


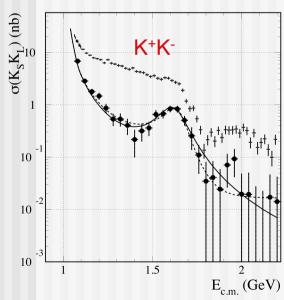
Data/MC = 0.9394 ± 0.0052 (0.6%)


ϕ signal in e⁺e⁻ \rightarrow K_SK_L reaction

Use events with χ^2 <15 and reconstructed parameters of K_S and K_L to calculate m(K_SK_L)



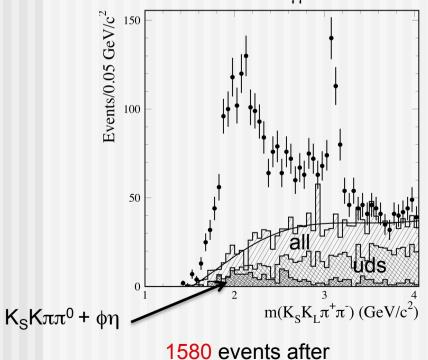

Fit to φ parameters

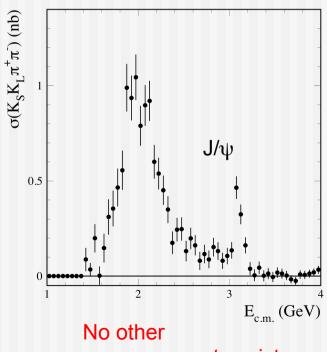


e+e-→K_SK_L cross section for m(K_SK_L)>1.06 GeV

Is it φ(1680)? Fit with single BW

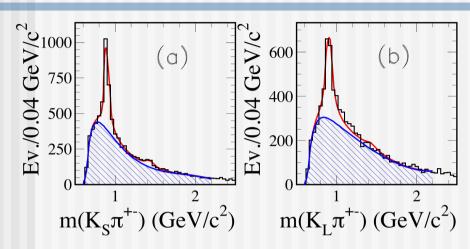
$$\begin{split} \sigma(s) &= \frac{P(s)}{s^{5/2}} \left| \frac{A_{\phi(1020)}}{\sqrt{P(m_{\phi})}} + \frac{A_X}{\sqrt{P(m_X)}} \cdot e^{i\varphi} + A_{bkg} \right|^2 \\ P(s) &= \left(\left(s/2 \right)^2 - m_{K^0}^2 \right)^{3/2} \\ A(s) &= \frac{\Gamma(m^2) \cdot m^3 \sqrt{\sigma_0 \cdot m}}{s - m^2 + i \sqrt{s} \Gamma(s)} \\ \Gamma(s) &= \Gamma \cdot \sum_f B_f \cdot \frac{P_f(s)}{P_f(m_f^2)} \\ A_{\phi(1020)} &= A_{\phi} + A_{\omega} - A_{\rho}, \qquad f = K^* K, \phi \eta, \phi \pi \pi, K_S K_L \\ \sigma_0 &= 0.46 \pm 0.10 \pm 0.04 \text{ nb} \\ m &= 1674 \pm 12 \pm 6 \text{ MeV/c}^2 \\ \Gamma_0 &= 165 \pm 38 \pm 70 \text{ MeV} \\ \varphi &= 3.01 \pm 0.38 - \text{fixed to } \pi \\ \sigma_{\text{bkg}} &= 0.36 \pm 0.18 \text{ nb} \\ \Gamma_{\text{ee}} \cdot \mathbf{B}_{\text{KSKL}} &= 14.3 \pm 2.4 \pm 1.5 \pm 6.0 \text{ eV} \end{split}$$


Simultaneous K_SK_L and K^+K^- (and $\pi\pi$) fit is needed to separate I=0,1 states and ω (1420, 1650), ρ (1450,1700) contribution


$K_SK_L\pi^+\pi^-\gamma$ event selection

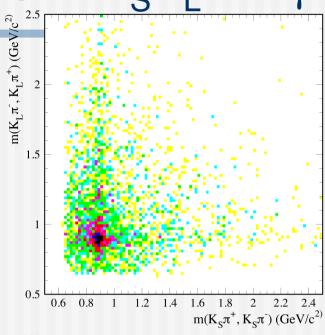
- Select (best) K_S
- Select ISR photon with E > 3 GeV
- Two additional tracks from IP (no kaon ID)
- Cycle over remaining clusters with E > 0.2 GeV K_L candidates
- Best χ^2 for 3C fit (K_L momentum float)

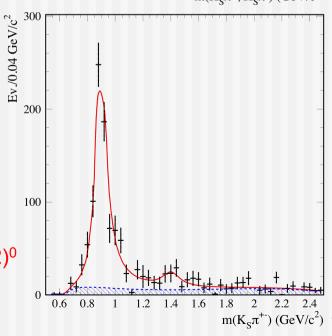
background subtraction


• $\chi^2 > 100$ and $Im_{\gamma\gamma} - 0.135I > 0.03$ for the $K_S K \pi \pi^0 \gamma$ hypothesis

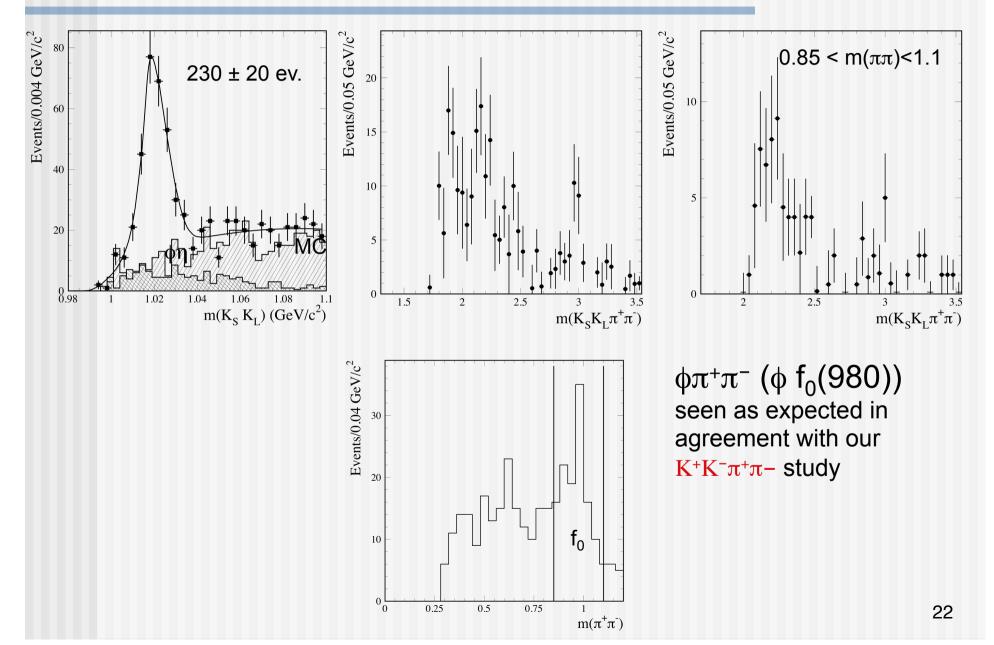
measurements exist

Some mass distributions in K_SK_Lπ⁺π⁻γ

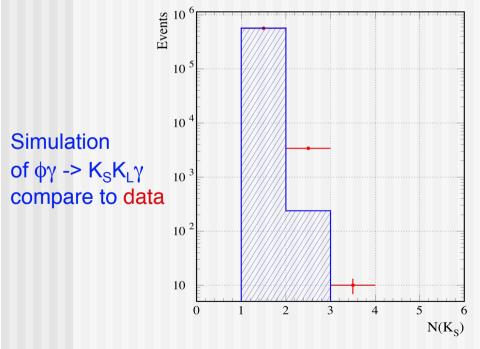



Very clear K*(892) $^{\pm}$ signals with 1322 \pm 70 for K* $^{\pm}$ (K $_{S}\pi$) and 1362 \pm 78 for K* $^{\pm}$ (K $_{L}\pi$) Plus 183 \pm 48 events for K $_{2}$ (1430) $^{\pm}$

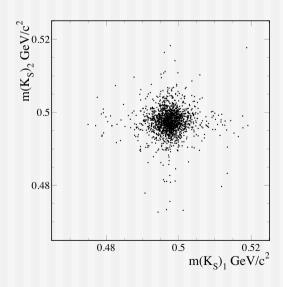
How large is K*(892)+K*(892)- ? Fit slice in m(K_L π^{+-}) for number of K_S π^{-+}


Very clear signal with 913 ± 37 events (70%) of $K^*(892)^+K^*(892)^-$ correlated production! And 90 ± 16 for $K^*(892)^{+-}K_2^*(1430)^{-+}$.

We have negligible contribution from $K^*(892)^0\underline{K}^*(892)^0$ from our $K^+K^-\pi^+\pi^-$ analysis!

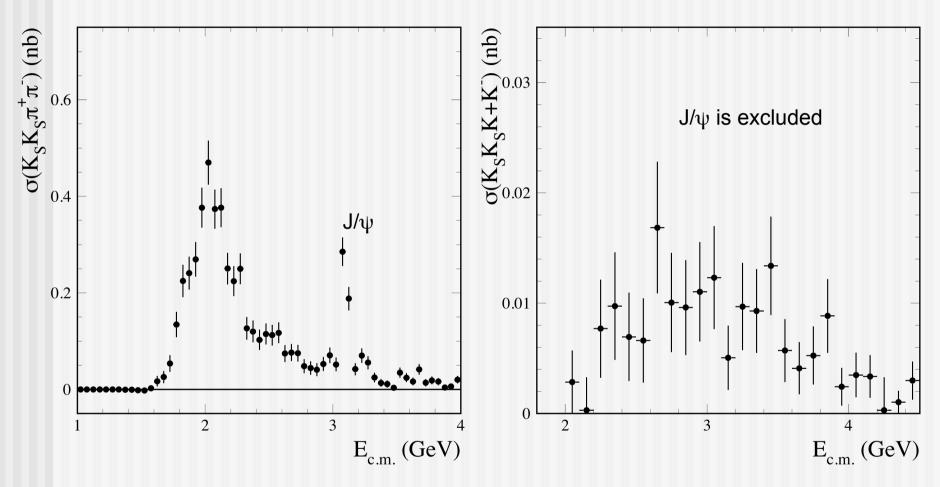


$\phi(1020)\pi^+\pi^-$ contribution in $K_SK_L\pi^+\pi^-\gamma$

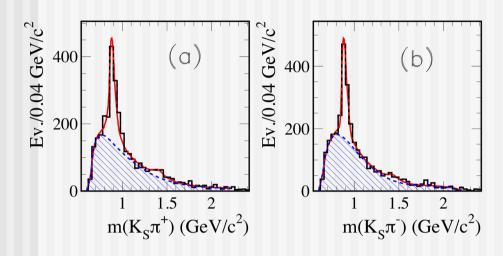


$K_SK_S\pi^+\pi^-(K^+K^-)\gamma$ event selection

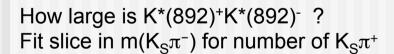
- Select 2 (best) K_S
- Select ISR photon with E > 3 GeV
- Two additional tracks from IP with pion or kaon ID
- Best χ^2 for 4C fit assuming $K_S K_S \pi^+ \pi^- (K^+ K^-) \gamma$ hypotheses



About 3000 ISR events with 2 good K_S

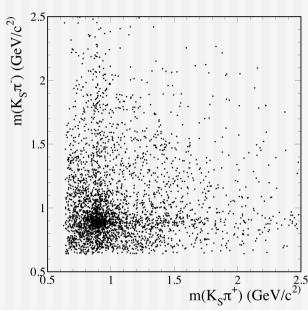

Six tracks with ISR photon – very low background!

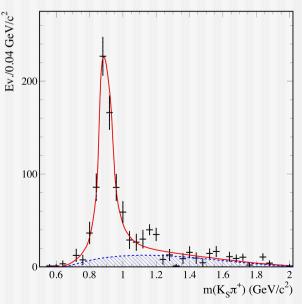
$e^+e^- \rightarrow K_S K_S \pi^+ \pi^- (K^+ K^-)$ cross sections



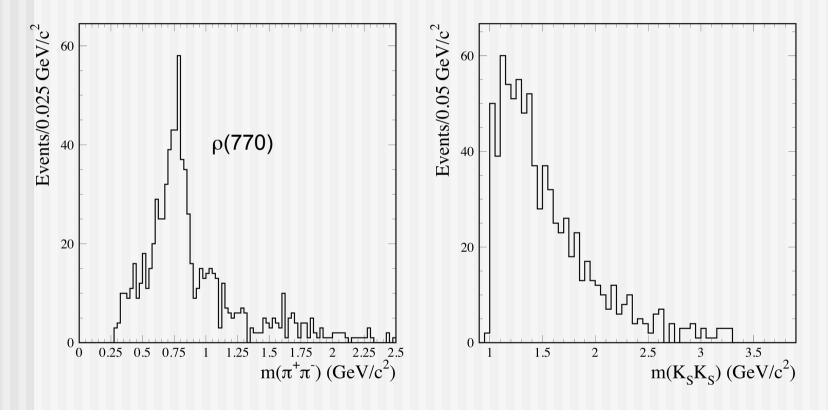
No other measurements exist

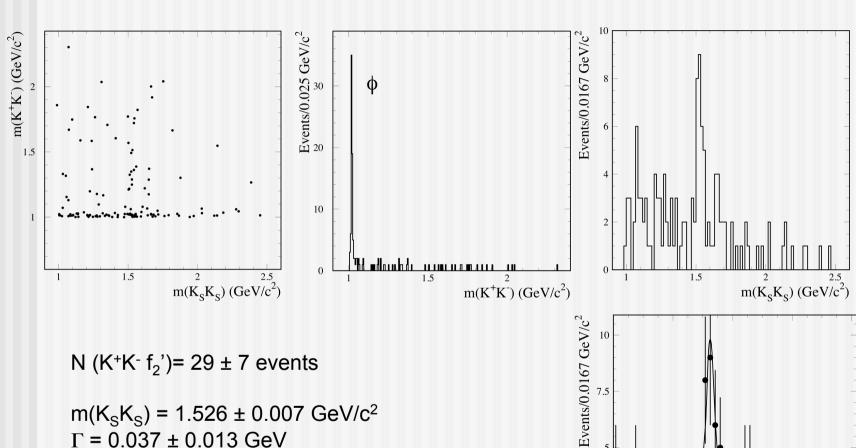
Some mass distributions in $K_SK_S\pi^+\pi^-$



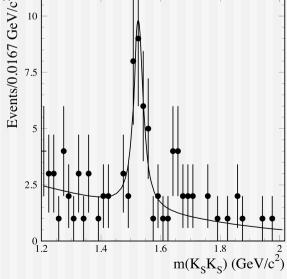

Very clear K*(892)* signals with 829 ± 49 for K*+ ($K_S\pi^+$) and 856 ± 50 for K*- ($K_S\pi^-$) Plus 116 ± 40 (70±34) events for $K_2(1430)^\pm$

Very clear signal with $742 \pm 30 \pm 100$ events (50%) of $K^*(892)^+K^*(892)^-$ correlated production!

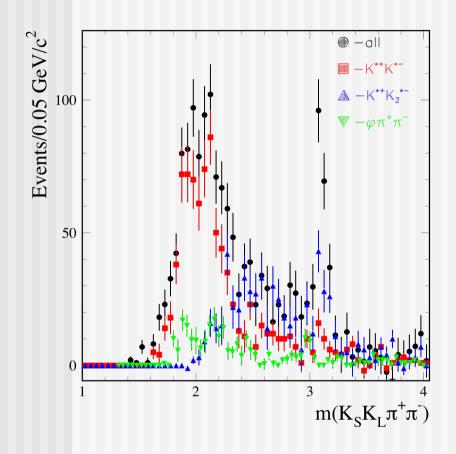

No $K^*(892)^{+-}K_2^*(1430)^{-+}$ seen.

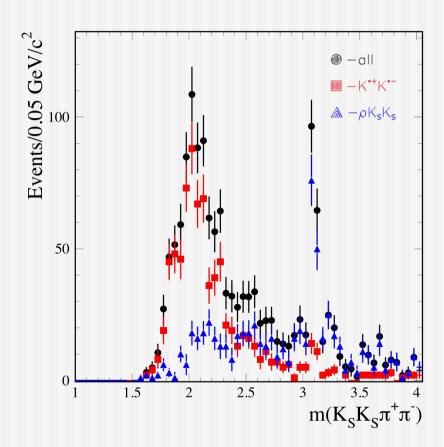

Some mass distributions in $K_SK_S\pi^+\pi^-$

If we exclude $K^*(892)^+K^*(892)^-$ by $|m(K_S\pi) - m(K^*)| < 0.15$ GeV/c² in both combinations:

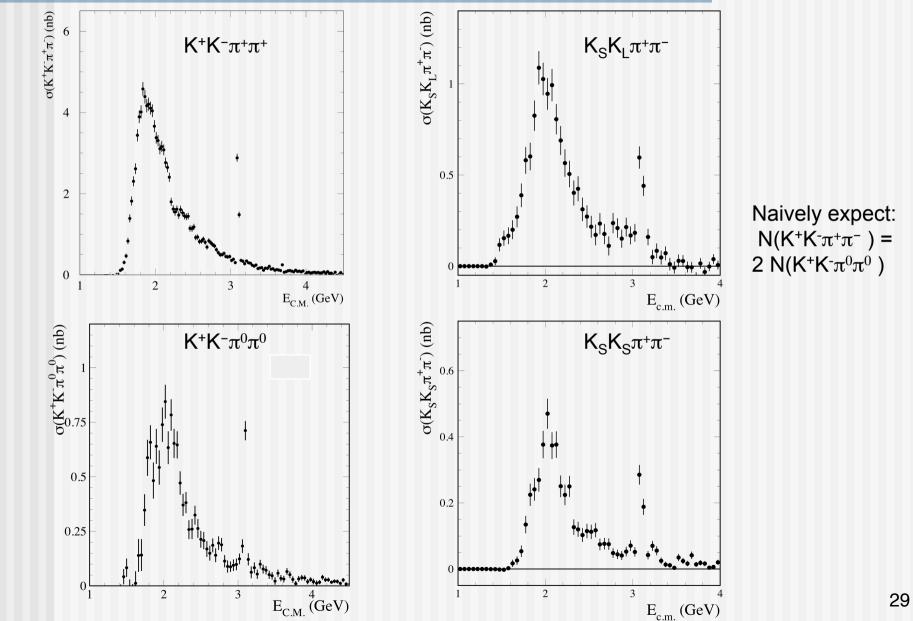

Plus some number of $K^*(892)K_S\pi$ events

Some mass distributions in K_SK_SK+K⁻




PDG:

 $m(f_2') = 1.525 \pm 0.005 \text{ GeV/c}^2$ $\Gamma = 0.073 \pm 0.006 \text{ GeV}$



$K_SK_L\pi^+\pi^-$, $K_SK_S\pi^+\pi^-$ signal decomposition

The cross section comparison – BaBar data

Iso-spin relations for $K^+K^-\pi^+\pi^+$ vs. $K^+K^-\pi^0\pi^0$ vs. $K_SK_L\pi^+\pi^-$ vs. $K_SK_S\pi^+\pi^-$

Only K*(892)+K*(892)-contribution can be compared using iso-spin relations, and we expect:

$$\begin{split} &\mathsf{N}(\mathsf{K}^{+}\mathsf{K}^{-}\pi^{0}\pi^{0}\) = \frac{1}{4}\;\mathsf{N}(\mathsf{K}^{0}\underline{\mathsf{K}}^{0}\;\pi^{+}\pi^{-}) \\ &\mathsf{N}(\mathsf{K}_{S}\mathsf{K}_{\mathsf{L}}\pi^{+}\pi^{-}\) = \frac{1}{2}\;\mathsf{N}(\mathsf{K}^{0}\underline{\mathsf{K}}^{0}\;\pi^{+}\pi^{-}) \\ &\mathsf{N}(\mathsf{K}_{S}\mathsf{K}_{S}\pi^{+}\pi^{-}\) = \mathsf{N}(\mathsf{K}_{\mathsf{L}}\mathsf{K}_{\mathsf{L}}\pi^{+}\pi^{-}\) = \frac{1}{4}\;\mathsf{N}(\mathsf{K}^{0}\underline{\mathsf{K}}^{0}\;\pi^{+}\pi^{-}) \end{split}$$

We detect correlated pairs:

$$N(K^+K^-\pi^0\pi^0) = 1750 \pm 60$$
 eff= 8%

$$N(K_SK_L\pi^+\pi^-) = 2098 \pm 209$$
 eff= 5%

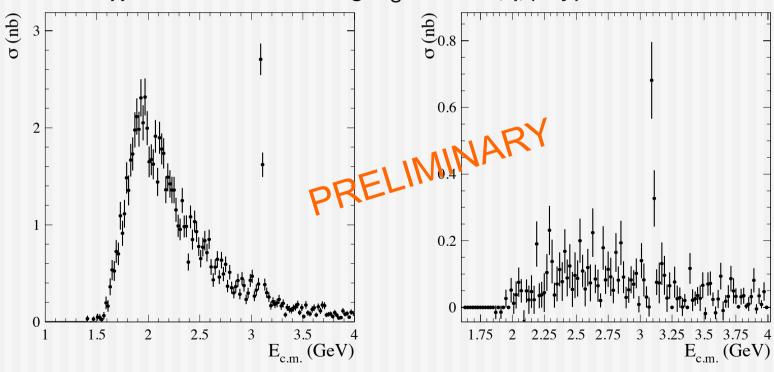
$$N(K_SK_S\pi^+\pi^-) = 742 \pm 104$$
 eff= 4.5%

Should be equal numbers after efficiency normalized to 5% and iso-spin correction:

$$2188 \pm 76$$
 ~ 2098 ± 209 ~ 1648 ± 232

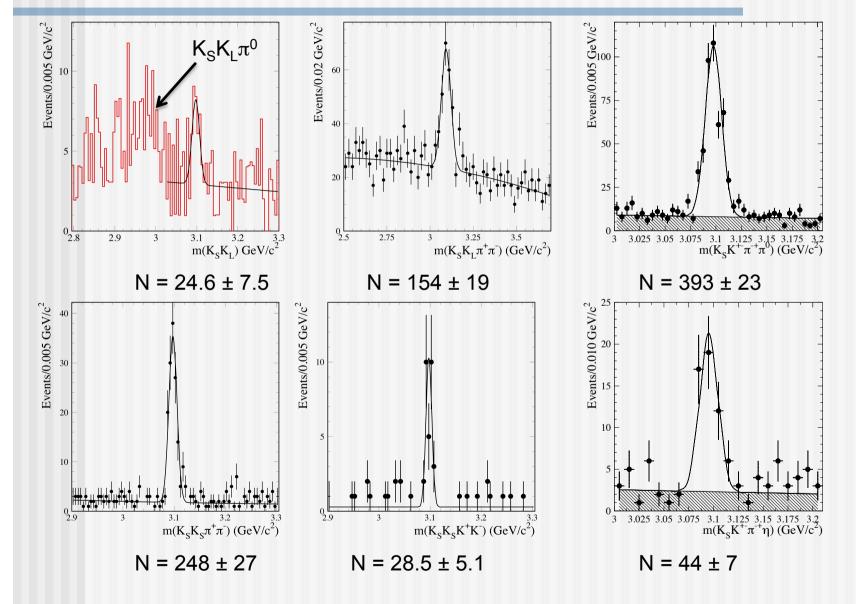
Some tension (~2 sigma)

30%


63%

50%

of all events – how the rest are added to the g-2 calculation?


$K_SK^{-+}\pi^{+-}\pi^0(\eta)\gamma$ event selection

- Select 1 (best) K_S
- Select ISR photon with E > 3 GeV
- Two additional tracks from IP with pion or kaon ID
- Loop over remaining photons in π^0 or η mass windows
- Best χ^2 for 5C fit assuming $K_S K^{-+} \pi^{+-} \pi^0(\eta) \gamma$ hypotheses

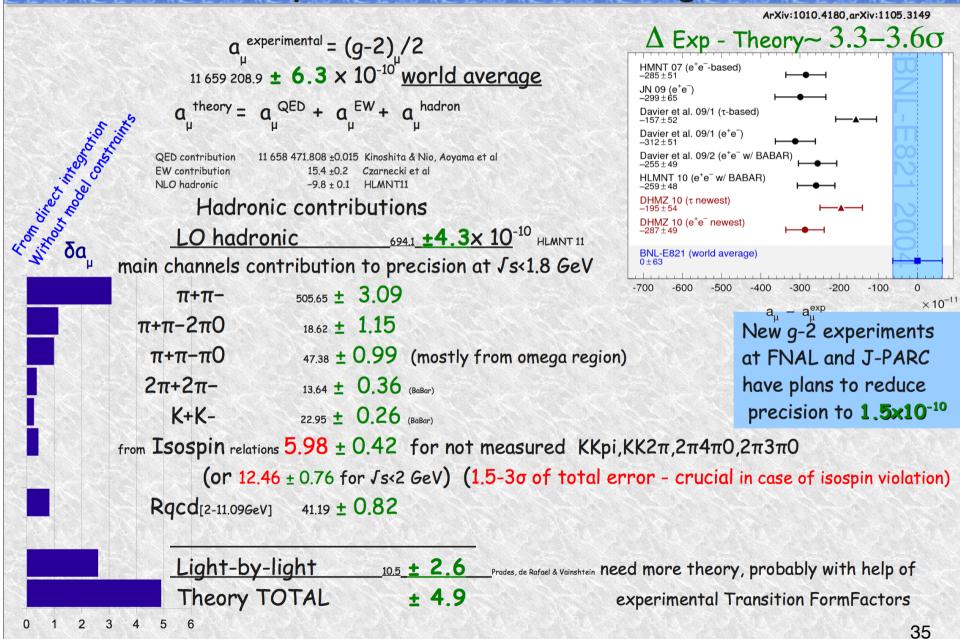
J/ψ region

We observe a J/ψ signal in all studied channels

J/ψ decay results

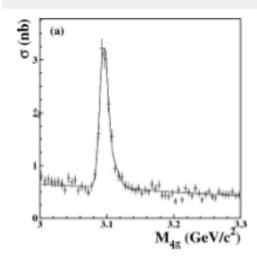
Measured Quantity	Measured value (eV)	This work Br (10 ⁻³) $\Gamma_{\rm ee}$ = 5.55 ± 0.14 keV	PDG 2014 Br (10 ⁻³)
Γ_{ee} •Br(J/ψ -> K _S K _L)	1.13±0.34±0.11	$0.20 \pm 0.06 \pm 0.02$	0.146 ± 0.026 S=2.7
Γ_{ee} •Br(J/ψ -> K _S K _L π ⁺ π ⁻)	20.9±2.7±2.1	$3.7 \pm 0.6 \pm 0.4$	no entry
Γ_{ee} • Br(J/ψ -> K _S K _S π ⁺ π ⁻)	9.3±0.9±0.5	$1.68 \pm 0.16 \pm 0.08$	no entry
$\Gamma_{ee} \bullet Br(J/\psi -> K_SK_SK^+K^-)$	2.3±0.4±0.1	$0.42 \pm 0.08 \pm 0.02$	no entry
$\Gamma_{ee} \bullet Br(J/\psi -> K_S K_S \phi) \bullet Br(\phi -> K^+ K^-)$	1.6±0.4±0.1	$0.58 \pm 0.14 \pm 0.03$	no entry
$\Gamma_{ee} \bullet Br(J/\psi -> f_2' \phi) \bullet Br(\phi -> K^+ K^-)$ $\bullet B(f_2' -> K_S K_S)$	0.88±0.34±0.04	0.45±0.17 ± 0.02	$0.8 \pm 0.4 $ S=2.7
Γ_{ee} • Br(J/ψ -> K _S K ⁻⁺ π ⁺⁻ π ⁰)	31.7±1.9±1.8	$5.7 \pm 0.3 \pm 0.4$	no entry
Γ_{ee} • Br(J/ψ -> K _S K ⁻⁺ π ⁺⁻ η)	7.3±1.4±0.4	$1.30 \pm 0.25 \pm 0.07$	2.2 ± 0.4

B(J/
$$\psi$$
 -> ϕ f₂') = (0.48 ± 0.18)•10⁻³ (MarkII)
B(J/ ψ -> ϕ f₂') = (1.23 ± 0.026 ± 0.20)•10⁻³ (DM2)


We measure:

$$\mathcal{B}_{J/\psi
ightarrow f} \cdot \Gamma_{ee}^{J/\psi} = rac{N_{J/\psi
ightarrow f} \cdot m_{J/\psi}^2}{6\pi^2 \cdot d\mathcal{L}/dE \cdot \epsilon_f(m_{J/\psi}) \cdot C}$$

Summary


- BaBar continues analysis of collected data and ISR studies in particular
- Most published results for e⁺e⁻ → hadrons reactions have the best to date accuracy.
- Recently obtained $e^+e^- -> K_SK_L\pi^+\pi^-$, $K_SK_S\pi^+\pi^-$, $K_SK_SK^+K^-$, $K_SK_S\pi^+\pi^0$ (η) cross sections were never studied before. Intermediate states study is performed.
- Using these cross sections we can reduce uncertainty in the muon g-2 calculation.
- J/ ψ decays to above modes have been measured for the first time.
- Results for $K_SK_L \pi^0(\pi^0)$ final state should come out soon it will completely close iso-spin relations problem in the g-2 calculation for the $KK\pi\pi$ modes.

SM prediction for muon g-2

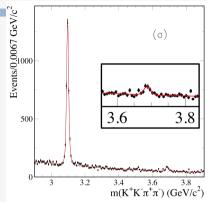
charmonium branching ratios

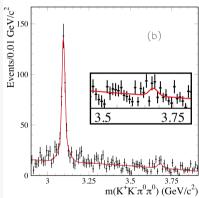
PRELIMINARY

$$\mathcal{B}_{J/\psi \to 2(\pi^+\pi^-)} \cdot \sigma_{int}^{J/\psi} = \frac{N(J/\psi \to 2(\pi^+\pi^-))}{d\mathcal{L}/dE \cdot \epsilon_{MC}} = (48.9 \pm 2.1_{stat} \pm 1.0_{syst}) \,\mathrm{MeV/}c^2 \,\mathrm{nb}$$

$$\mathcal{B}_{J/\psi \to 2(\pi^{+}\pi^{-})} = (3.67 \pm 0.16_{stat} \pm 0.08_{syst} \pm 0.09_{ext}) \cdot 10^{-3}$$

$$\mathcal{B}_{J/\psi \to 2(\pi^{+}\pi^{-})}^{PDG} = (3.55 \pm 0.23) \cdot 10^{-3}$$


 $M_{4\pi}^{3.2}(GeV/c^{2^{3.3}})$ \rightarrow agrees with PDG, higher in precision


$$\mathcal{B}_{\psi(2S)\to J/\psi \,\pi^+\pi^-} \cdot \mathcal{B}_{J/\psi \to \mu^+\mu^-} \cdot \sigma_{int}^{\psi(2S)} = \frac{N(\psi(2S)\to \pi^+\pi^-\mu^+\mu^-)}{d\mathcal{L}/dE \cdot \epsilon_{MC}}$$
$$= (84.7 \pm 2.2_{stat} \pm 1.8_{syst}) \,\mathrm{MeV}/c^2 \,\mathrm{nl}$$

$$\begin{array}{lll} \mathcal{B}_{\psi(2S)\to J/\psi\;\pi^+\pi^-} & = & 0.354 \pm 0.009_{stat} \pm 0.007_{syst} \pm 0.007_{ext} \\ \mathcal{B}_{\psi(2S)\to J/\psi\;\pi^+\pi^-}^{PDG} & = & 0.336 \pm 0.005 \\ \mathcal{B}_{\psi(2S)\to J/\psi\;\pi^+\pi^-}^{CLEO} & = & 0.3504 \pm 0.009_{stat} \pm 0.0007_{syst} \pm 0.0077_{ext} \end{array}$$

→ agrees with recent CLEO result (PRD 78, 011102 (2008))

J/ψ region for $K^{+}K^{-}\pi^{+}\pi^{-}$, $K^{+}K^{-}\pi^{0}\pi^{0}$, $K^{+}K^{-}K^{+}K^{-}$

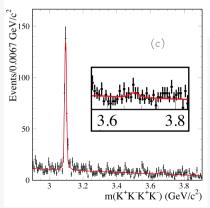
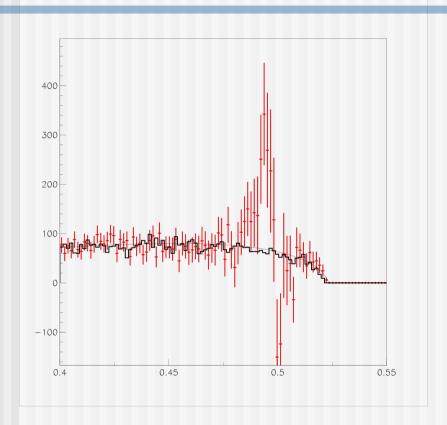
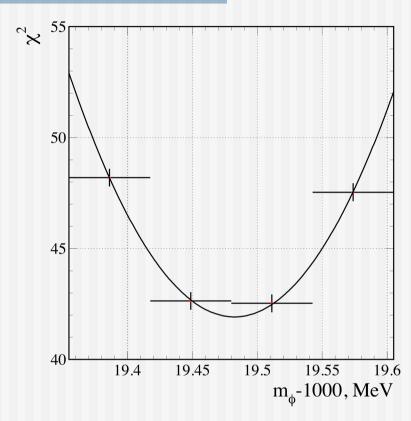


TABLE XIII: Summary of the J/ψ and $\psi(2S)$ branching fraction values obtained in this analysis.

Measured	Measured		
Quantity	Value (eV)	This work	PDG2010
$\Gamma_{ee}^{J/\psi} \cdot \mathcal{B}_{J/\psi \to K^+K^-\pi^+\pi^-}$	$37.94 \pm 0.81 \pm 1.10$	$6.84 \pm 0.15 \pm 0.27$	6.6 ± 0.5
$\Gamma_{ee}^{J/\psi} \cdot \mathcal{B}_{J/\psi \to K^+K^-\pi^0\pi^0}$	$11.75 \pm 0.81 \pm 0.90$	$2.12\pm0.15\pm0.18$	2.45 ± 0.31
$\Gamma_{ee}^{J/\psi} \cdot {\cal B}_{J/\psi o K^+K^-K^+K^-}$	$4.00 \pm 0.33 \pm 0.29$	$0.72 \pm 0.06 \pm 0.05$	0.76 ± 0.09
$\Gamma^{J/\psi}_{\epsilon\epsilon} \cdot \mathcal{B}_{J/\psi \to K^{*0} \overline{K}_2^{*0}} \cdot \mathcal{B}_{K^{*0} \to K^+\pi^-} \cdot \mathcal{B}_{\overline{K}_2^{*0} \to K^-\pi^+}$	$8.59 \pm 0.36 \pm 0.27$	$6.98 \pm 0.29 \pm 0.21$	6.0 ± 0.6
$\Gamma^{J/\psi}_{ee} \cdot \mathcal{B}_{J/\psi \to K^{*0}\overline{K}^{*0}} \cdot \mathcal{B}_{K^{*0} \to K^{+}\pi^{-}} \cdot \mathcal{B}_{\overline{K}^{*0} \to K^{-}\pi^{+}}$	$0.57 {\pm} 0.15 {\pm} 0.03$	$0.23 {\pm} 0.06 {\pm} 0.01$	0.23 ± 0.07
$\Gamma^{J/\psi}_{ee}\cdot \mathcal{B}_{J/\psi ightarrow \phi \pi^+ \pi^-}\cdot \mathcal{B}_{\phi ightarrow K^+ K^-}$	$2.19 \pm 0.23 \pm 0.07$	$0.81 {\pm} 0.08 {\pm} 0.03$	0.94 ± 0.09
$\Gamma^{J/\psi}_{ee}\cdot {\cal B}_{J/\psi o\phi\pi^0\pi^0}\cdot {\cal B}_{\phi o K^+K^-}$	$1.36 {\pm} 0.27 {\pm} 0.07$	$0.50 \pm 0.10 \pm 0.03$	0.56 ± 0.16
$\Gamma^{J/\psi}_{ee}\cdot \mathcal{B}_{J/\psi o \phi K^+K^-}\cdot \mathcal{B}_{\phi o K^+K^-}$	$2.26{\pm}0.26{\pm}0.16$	$1.66 {\pm} 0.19 {\pm} 0.12$	1.83 ± 0.24^{a}
$\Gamma^{J/\psi}_{ee}\cdot \mathcal{B}_{J/\psi o \phi f_0}\cdot \mathcal{B}_{\phi o K^+K^-}\cdot \mathcal{B}_{f_0 o \pi^+\pi^-}$	$0.69 {\pm} 0.11 {\pm} 0.05$	$0.25 {\pm} 0.04 {\pm} 0.02$	$0.18 \pm 0.04^{\ b}$
$\Gamma^{J/\psi}_{ee} \cdot \mathcal{B}_{J/\psi o \phi f_0} \cdot \mathcal{B}_{\phi o K^+K^-} \cdot \mathcal{B}_{f_0 o \pi^0 \pi^0}$	$0.48 \pm 0.12 \pm 0.05$	$0.18 \pm 0.04 \pm 0.02$	$0.17\ \pm0.07$ °
$\Gamma^{J/\psi}_{ee}\cdot \mathcal{B}_{J/\psi o \phi f_x}\cdot \mathcal{B}_{\phi o K^+K^-}\cdot \mathcal{B}_{f_x o \pi^+\pi^-}$	$0.74 {\pm} 0.12 {\pm} 0.05$	$0.27 \pm 0.04 \pm 0.02$	$0.72\ \pm0.13^{\ d}$
1/00)			
$\Gamma_{e\phi}^{\psi(2S)} \cdot \mathcal{B}_{\psi(2S) \to K^+K^-\pi^+\pi^-}$	$1.92\pm0.30\pm0.06$	$0.81 \pm 0.13 \pm 0.03$	0.75 ± 0.09
$\Gamma_{ee}^{\varphi(2S)} \cdot \mathcal{B}_{\psi(2S)} \cdot \nu + \nu = 0.0$	$0.60 \pm 0.31 \pm 0.03$	$0.25 \pm 0.13 \pm 0.02$	no entry
$\Gamma_{ee}^{\psi(2S)} \cdot \mathcal{B}_{\psi(2S) \to K^+K^-K^+K^-}$	$0.22 {\pm} 0.10 {\pm} 0.02$	$0.09 \pm 0.04 \pm 0.01$	0.060 ± 0.014
$\Gamma_{ee}^{(2S)} \cdot \mathcal{B}_{\psi(2S) \to \phi \pi^+ \pi^-} \cdot \mathcal{B}_{\phi \to K^+ K^-}$	$0.27 {\pm} 0.09 {\pm} 0.02$	$0.23 \pm 0.08 \pm 0.01$	0.117 ± 0.029
$\Gamma_{ee}^{\psi(2S)} \cdot \mathcal{B}_{\psi(2S) o \phi f_0} \cdot \mathcal{B}_{\phi o K^+K^-} \cdot \mathcal{B}_{f_0 o \pi^+\pi^-}$	$0.17 \pm 0.06 \pm 0.02$	$0.15 \pm 0.05 \pm 0.01$	$0.068{\pm}0.024$ e

 $^{{}^}a\mathcal{B}_{J/\psi o \phi \overline{K} K}$ obtained as $2 \cdot \mathcal{B}_{J/\psi o \phi K^+ K^-}$. b Not corrected for the $f_0 o \pi^0 \pi^0$ mode.

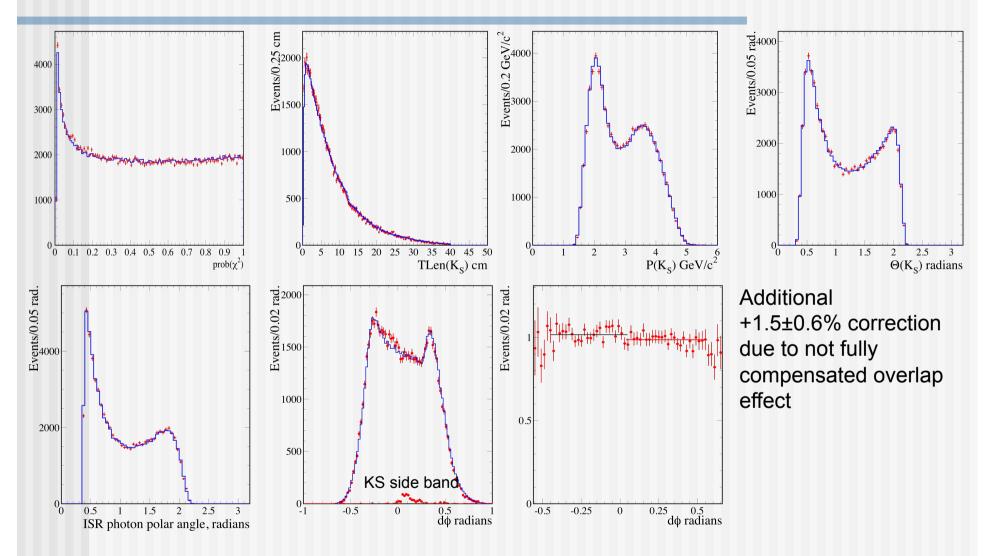

Small systematic errors allow BaBar to improve BF for major decay modes.


^cNot corrected for the $f_0 \rightarrow \pi^+\pi^-$ mode.

^dWe compare our $\phi f_x, f_x \to \pi^+\pi^-$ mode with $\phi f_2(1270)$.

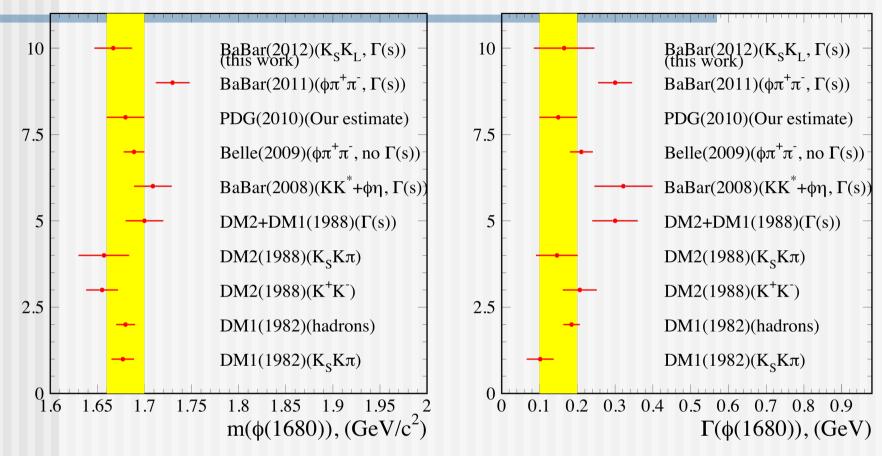
 $^{{}^}e\mathcal{B}_{\psi(2S)\to\phi f_0}, f_0\to\pi^+\pi^-$

φ(1020) mass



In MC we know all inputs and can create a "test" $m(K_L)$ distribution and compare with data. And the only free parameter is $\phi(1020)$ mass. By varying f mass we calculate $\chi 2$ value by fitting data-MC difference with "ARGUS" function. We obtain:

 m_{ϕ} = 1019.483 ± 0.040 ± 0.036 MeV/c² : 24 keV – K⁰ mass uncertainty, 20 keV – K_S momentum, 18 keV – DCH-EMC mis-alignment.


How other distributions look like

Clean events with small systematic errors - 1% from KS, 0.5% ISR photon, 0.5% background, 0.6% from overlap effect.

39

What we know about $\phi(1680)$

Energy dependence significantly increase width.

BaBar has measured $\phi(1680)$ parameters in major decay modes:

 ϕ (1680) \rightarrow K_SKπ, KKπ⁰ (K*K), ϕ η, ϕ ππ, K_SK_L - still no info in PDG