Heavy flavour production at HERA

Uri Karshon Weizmann Institute of Science, ISRAEL

On behalf of the H1 and ZEUS Collaborations

PHOTON-2015 Conference

Budker Institute of Nuclear Physics, Novosibirsk, Russia 15-19 June, 2015 OUTLINE

Introduction and experimental set-up Theory of heavy quark production $D^{*\pm}$ photoproduction at 3 center-of-mass energies Charm fragmentation fractions in photoproduction D^{\pm} production in deep inelastic scattering HERA charm data combination in DIS Combination of $D^{*\pm}$ differential cross sections in DIS Beauty production in DIS Summary

Introduction and experimental set-up

Theory of heavy quark production

Several QCD NLO schemes for heavy quark (Q=c or b) production: 1)Massive scheme: $Q^2 \approx m_Q^2$ Fixed flavour number scheme (FFNS) 3 active flavours in proton; Q-quark not considered as parton in p c or b produced perturbatively in hard scattering (see p.2) Mass effects correctly included Spoiled by large logs of Q^2/m_Q^2 , p_t/m_Q ...

2)Massless scheme: $Q^2 >> m_Q^2$

Zero-mass variable flavour number scheme (ZM-VFNS)

c or b treated as massless parton

Resummation of large logarithms of Q^2/m_Q^2

 \Rightarrow c or b density added as 4th flavour like the light quarks

At intermediate Q^2 the 2 schemes should be merged

3) General-mass variable flavour number scheme (GM-VFNS) Equivalent to FFNS for $Q^2 \leq m_Q^2$ and to ZM-VFNS for $Q^2 > m_Q^2$ Interpolation in between (various schemes interpolate differently) Used in parton density function (PDF) fits (useful at LHC)

$D^{*\pm}$ photoproduction at 3 CM energies

Clear $D^{*\pm}$ signals seen in $M(K^-\pi^+\pi_s^+) - M(K^-\pi^+)$ distributions at 3 different CM energies: $\sqrt{s} = 318, 251, 225 \text{ GeV}$ in the kinematic region: $1.9 < p_T^{D^*} < 20 \text{ GeV}$; $|\eta^{D^*}| < 1.6$; $Q^2 < 1 \text{ GeV}^2$; 0.167 < y < 0.802

HER: $\mathcal{L} = 144 \text{ pb}^{-1}$

MER: $\mathcal{L} = 6.3 \text{ pb}^{-1}$

LER: $L = 13.4 \text{ pb}^{-1}$

Background estimated by fitting simultaneously correct- and wrong-sign distributions in the range $\Delta M < 0.168$ GeV

$D^{*\pm}$ photoproduction at 3 CM energies

Visible D^* PHP cross sections obtained from: $\sigma_{vis}(D^*) = \frac{N^{data}(D^*)}{A \cdot BR \cdot \mathcal{L}}$ $BR = B(D^* \to D^0 \pi) \cdot B(D^0 \to K\pi) = 0.0263; \text{ A} = \text{acceptance}$ Ratio of visible cross sections: $R_{\sigma} = \frac{\sigma_i}{\sigma_{HER}}; i = HER, MER, LER$ yields higher precision of E-dependence of cross section since some syst. uncertainties in data and theory cancel Data compared to FFNS NLO predictions:

Cross sections increase with increasing ep CM energy This increase is predicted by NLO QCD

Charm fragmentation fractions in PHP

Fragmentation fractions of c-quarks into charm hadrons: Probability of c quark to hadronise into a given charm hadron $f(c \rightarrow charm \ hadron) = \sigma(charm \ hadron)/\sigma(total \ charm \ production)$

Needed to go from partonic QCD to hadronic cross sections No QCD predictions; crucial to compare pQCD with measurements Are they the same for c-quarks produced in e^+e^- , ep, pp collisions? Test fragmentation universality by measuring all of them

Measurements performed in PHP regime: $Q^2 < 1 \text{ GeV}^2$ Charm hadrons reconstructed in the range: $p_T > 3.8 \text{ GeV}, |\eta| < 1.6, 130 < W < 300 \text{ GeV}$

Charm hadrons measured: $D^0 o K^- \pi^+, \ D^+ o K^- \pi^+ \pi^+$

$$D^{*+} o D^0 \pi^+_s o K^- \pi^+ \pi^+_s
onumber \ D^+_s o \phi \pi^+, \ \ \Lambda^+_c o K^- p \pi^+$$

 $\sigma_{tot} = \sigma^{eq}(D^0) + \sigma^{eq}(D^+) + \sigma(D^+_s) + 1.14 \,\, \sigma(\Lambda^+_c)$

Full HERA II data: 372 pb⁻¹

JHEP 09 (2013) 058

6

Charm fragmentation fractions in PHP

Silicon-strip detector used for charm vertices \Rightarrow Clear charm hadron signals for all channals

Charm fragmentation fractions: Results (left column) in good agreement with previous results: ZEUS PHP, ZEUS DIS, H1 DIS, e^-e^-

Precision of charm f.f. competitive with combined e^+e^- LEP results Fragmentation fractions of *c*-quarks independent of production Support hypothesis of universality of heavy-quark fragmentation Universality supported also by new LHC *pp* data (ALICE + LHCb)

D^{\pm} production in DIS

NLO QCD predictions based on FFNS describe data well up to $Q^2 \approx 1000~{\rm GeV^2}$

Similar agreement for double differential cross sections $d\sigma/dy$ for different Q^2 ranges

D^{\pm} production in DIS

Charm contribution to proton structure function: Express double differential cross section as: $rac{d^2 \sigma^{car{c}}}{dx dQ^2} = rac{2\pi lpha^2}{xQ^4} [(1+(1-y)^2)F_2^{car{c}} - y^2F_L^{car{c}}]$ $F_2^{c\bar{c}}, F_L^{c\bar{c}}$ are charm contributions to proton structure functions F_2 and F_L $d\sigma/dy$ for different Q^2 bins used to extract $F_2^{c\bar{c}}$ at reference points x_i, Q_i^2 for each bin *i* using $F_{2,meas}^{car{c}}(x_i,Q_i^2)=\sigma_{i,meas}rac{F_{2,theo}^{cc}(x_i,Q_i^2)}{\sigma_{i,theo}}$

 $F_{2,theo}$ and $\sigma_{i,theo}$ calculated at NLO in FFNS with HVQDIS program D^{\pm} results compared to previous ZEUS D^* results and to predictions of GM-VFNS based on HERAPDF1.5 parton densities and of FFNS based on ZEUS-S PDF HERAPDF1.5 uses HERA ep data to provide NLO predictions compatible with other PDF groups

The NLO calculations describe new precise data well

U. Karshon

9

Combined 9 data sets of D^*, D^+, D^0, μ and liftime tag data with 155 H1 and ZEUS cross section measurements from various HERA I and HERA II analyses EPJ C73 (2013) 2311

Charm reduced cross section, $\sigma_{red}^{c\bar{c}}$, obtained in kinematic range:

 $2.5 < Q^2 < 2000 {
m ~GeV^2}; \, 3 \cdot 10^{-5} < x < 5 \cdot 10^{-2}$

 $rac{d^2 \sigma^{car{c}}}{dx dQ^2} = rac{2\pi lpha^2}{xQ^4} [(1+(1-y)^2) \sigma^{car{c}}_{red}]$

Reduced cross sections $\sigma_{red}^{c\bar{c}}$ as function of x for fixed Q^2 values: Example for $Q^2 = 18 \text{ GeV}^2$ Combined results - filled circles Correlated systematics fully taken into account Combined results uncertainty \approx factor 2 better than each most precise data set in the combination

How well does the mixed massive-massless scheme GM-VFNS work? Reduced cross sections $\sigma_{red}^{c\bar{c}}$ as function of x for fixed Q^2 values

Combined inclusive DIS data (HERA I+II) compared to NLO predictions based on HERAPDF1.5 extracted in **RT** standard scheme Lines are predictions with $M_c = 1.4 \,\, {
m GeV}$ $M_c = \text{effective (not physical)}$ mass parameter in GM-VFNS Large theory uncertainty dominated by M_c variation Within uncertainties NLO GM-VFNS describe data well

U. Karshon

Combined NLO analysis with $\sigma_{red}^{c\bar{c}}$ and inclusive DIS cross sections in kinematic range: $W > 15 \text{ GeV}, x < 0.65, Q^2 > 3.5 \text{ GeV}^2$

For each HFL scheme, PDF fits performed with $1.2 < M_c < 1.8 \text{ GeV}$

 χ^2 values vs. M_c from PDF fits for various HFL schemes

Minimal χ^2 values observed for each scheme at different M_c^{opt}

VFNS predictions for $\sigma_{red}^{c\bar{c}}$ with $M_c = 1.4 \text{ GeV} \text{ (up)} \text{ and } M_c = M_c^{opt} \text{ (down)}$

Implications on NLO predictions for W, Z production at LHC W^+, W^-, Z^0 cross section predictions for LHC at $\sqrt{s} = 7$ TeV Calculated for each scheme for $1.2 < M_c < 1.8$ GeV in 0.1 GeV steps

All cross sections rise monotonically with M_c

Significant spread of $\approx 6\%$ between predictions for any fixed M_c Reduces to $\approx 1.4 - 2\%$ when taking M_c^{opt} for each scheme

Combined charm data vs. ABM FFNS prediction: Uses instead of pole mass the running mass definition in \overline{MS} scheme

Data well described in full kinematic region Similar NLO/NNLO predictions Less sensitivity to higher order corrections)

 $m_c(m_c)$ extraction in MS scheme: Same minimisation procedure as for VFNS H1 and ZEUS _م× 700 Charm + HERA-I inclusive FF (ABM) $m_{c}(m) = 1.26 \pm 0.05 \text{ GeV}$ 680 660 640 620₁ 1.2 1.4 1.6 $m_c(m_c)$ [GeV] $m_c(m_c) = 1.26 \pm 0.05_{exp.} \pm 0.03_{mod.}$ $\pm 0.02_{param.} \pm 0.02_{lpha_s}~GeV$ Uncertainties are experimental, model, parametrisation and α_s Consistent with PDG: 1.275 ± 0.025 GeV

U. Karshon

Measurement of running m_c

Extract $m_c(m_c)$ separately for 6 different kinematic ranges in $\mu=\sqrt{< Q^2>+4m_c(m_c)^2}$ $< Q^2 >$ is the logarithmic average Q^2 of the subset Red points at scale m_c and bands are PDG average $m_c(m_c)$ translated to $m_c(\mu)$ by: $m_c(\mu) = m_c(m_c) rac{(rac{lpha_s(\mu)}{\pi})^{eta_0^{-1}}}{(rac{lpha_s(m_c)}{\pi})^{eta_0^{-1}}}$ $\beta_0 = 9/4$ for $N_f = 3$

Data consistent with expected QCD running First measurement of $m_c(\mu)$ from combined HERA charm reduced cross section data

Important consistency check, similar to running m_b at LEP

EPJ C55 (2008) 525

Combination of $D^{*\pm}$ differential cross sections in DIS

Combined H1+ZEUS D^{*+} visible differential cross sections w.r.t $p_T^{D^*}, \eta^{D^*}$ hep-ex 1503.06042; JHEP to be published

Correlations in systematic uncertainties fully taken into account Impressive reduction of uncertainties in the combined results Precision of combined data $\approx 5\%$ in large fraction of phase space Similar results and precision obtained for $d\sigma/dQ^2$ and $d\sigma/dy$

16

Combination of $D^{*\pm}$ differential cross sections in DIS

Differential cross sections compared to NLO predictions: HVQDIS HVQDIS setup for $ep \rightarrow c\bar{c}X \rightarrow D^*X$ uses some arbitrary variable definition e.g. $\mu_r = \mu_f = \sqrt{Q^2 + 4m_c^2}$; $m_c^{pole} = 1.5 \text{ GeV}$

Try to change parameters such that normalisation and shapes of all differential cross sections describe the data well

Found this to happen with $\mu_r = 0.5\sqrt{Q^2 + 4m_c^2}$; $m_c^{pole} = 1.4 \text{ GeV}$ and with some softening of the fragmantation function used

(Kartvelishvili et al.)

All other parameters left at default values

The value of $m_c^{pole} = 1.4 \text{ GeV}$ was also found to describe better the data in the study of $\sigma_{red}^{c\bar{c}}$ (p.14)

"NLO QCD customised" shown as red dots in the following plots

This is NOT a prediction, but may hint at which direction theory can be improved

Combination of $D^{*\pm}$ differential cross sections in DIS

HERA D^{*+} differential cross sections w.r.t $p_T^{D^*}, \eta^{D^*}, Q^2, y$ vs. theory (HVQDIS) Negligible theoretical uncertainties in data points, since no extrapolation

Combined data reach precision of $\approx 5\%$

NLO describe data within large uncertainties $(\approx 10 - 30\%)$

NLO customised describe data very well

NNLO calculations and improved fragmentation models may help

Similar conclusions for D^* double-differential cross sections in Q^2, y

Beauty production in DIS

JHEP 09 (2014) 127 Beauty cross section at HERA much smaller than charm With a micro-vertex detector at HERA II, lifetime information can be used $E_T^{jet}, \eta^{jet}, Q^2, x$ distributions of sec. vertices for b-enriched sample with $2 < m_{vtx} < 6$ GeV and $|S| = |d/\delta d| > 8$ d=decay length

> Differential cross sections for inclusive jet production in b-events as function of Q^2 and x

> Good description of the data by the NLO FFNS HVQDIS prediction

10⁻¹

10⁻¹

х

Beauty production in DIS

Left: Structure function $F_2^{b\bar{b}}$ as function of Q^2 for fixed x values in good agreement with FFNS and GM-VFNS NLO and NNLO predictions

Right: Reduced b cross section $\sigma_r^{b\bar{b}}$ as function of x for fixed Q^2 values used to determine b-quark mass in a QCD fit as done for the c-quark mass Lines are results with $m_b = 4.07$ (best fit), 3.93 and 4.21 GeV Sensitivity to m_b comes mostly from low Q^2

U. Karshon

Beauty production in DIS

 $m_b(m_b)$ translated, as for $m_c(m_c)$, to $m_b(\mu)$ with $\mu = 2m_b$ and compared to PDG and LEP results

Mass running is consistent with QCD

H1 and ZEUS still providing new charm(ing) and beauty(full) results with full HERA data \Rightarrow tighter constraints on QCD

 $\sigma(D^*)$ in PHP vs. ep CM energy measured for the first time at HERA. The D^* cross sections increase with \sqrt{s} as predicted by NLO QCD

New precise charm fragmentation fractions measurements in PHP competitive with e^+e^- collisions; support fragmentation universality

New DIS charm measurements and HERA charm data combination provide constraints on PDFs and on QCD heavy quark calculations

Most HERA DIS charm data were combined:

Consistent data sets extracted using different methods; reduced uncertainties Data are well described by FFNS and GM-VFNS QCD predictions Optimal M_c parameter for different VFNS improves predictions of $\sigma_{W,Z}$ at LHC Running charm mass in \overline{MS} FFNS: $m_c(m_c) = 1.26 \pm 0.06$ GeV agree with PDG First measurement of the charm-mass running at HERA

Combination of D^* visible cross sections:

Negligible theory uncertainties (no extrapolation) Challenge to theory and fragmentation models

New precise b-jet measurement + lifetime tag in DIS using secondary vertices: Data well described by NLO QCD

b mass measured in \overline{MS} scheme: $m_b(m_b) = 4.07 \pm 0.17$ GeV agree with PDG

b mass running consistent with QCD