Johan Messchendorp (KVI-CART/University of Groningen) on behalf of the PANDA Collaboration CHARM18, Novosibirsk, Russia, 21-25 May 2018

Prospects of Charm Physics at

Dan da

PANDA in a nutshell!

Community

- interdisciplinair: nuclear, hadron & particle physics
- international: 460 scientists from 19 countries
- strong network in other collaborations

Uniqueness

- usage of antiprotons: precision & exploration
- strange, charm, and gluon "factory"

Technology

- data complexity & detector developments
- versatile instrument

Facility for Antiproton and Ion Research

panda

Facility for Antiproton and Ion Research

Facility for Antiproton and Ion Research

PANDA staging

High Energy Storage Ring - precision antiprotons

High resolution mode:

- e- cooling : p<8.9 GeV/c
- 10¹⁰ antiprotons stored
- Luminosity up to 2x10³¹ cm⁻²s⁻¹
- $dp/p = 4x10^{-5}$

High intensity mode:

- Stochastic cooling
- 10¹¹ antiprotons stored
- Luminosity up to 2x10³² cm⁻²s⁻¹
- $dp/p = 2x10^{-4}$

Phase 1+2: max. 10¹⁰ antiprotons stored

The "magic" of antiprotons

I. Versatile

Probing QCD at various distance scales

Dan da

Versatility of antiprotons at PANDA

Systematic and precise tool to rigorously study the dynamics of QCD

PANDA physics ambitions

Extensive study of the strong force using antiprotons

Hadron spectroscopy & dynamics

- open- and hidden charm
- gluonic excitations (glueballs, hybrids, ..)
- light meson systems
- hyperon spectroscopy & dynamics

Nucleon structure

- electr. magn. form factors
- TMDs, GPDs, TDAs

Hypernuclei

11

- $\Lambda\Lambda$ hypernuclei
- hyperfine splitting in Ω atom
- (multi) strange baryons

Hadrons in nuclear medium

- antiproton-A collisions
- nuclear potentials of antibaryons
- charmonium-nucleon interactions

Physics Performance Report for:

PANDA

(AntiProton Annihilations at Darmstadt)

Strong Interaction Studies with Antiprotons

 $\overline{\mathsf{P}}\mathsf{ANDA}$ Collaboration

To study fundamental questions of hadron and nuclear physics in interactions of antiprotons with nucleons and nuclei, the universal $\overline{P}ANDA$ detector will be build. Gluonic excitations, the physics of strange and charm quarks and nucleon structure studies will be performed with unprecedented accuracy thereby allowing high-precision tests of the strong interaction. The proposed $\overline{P}ANDA$ detector is a state-of-theart internal target detector at the HESR at FAIR allowing the detection and identification of neutral and charged particles generated within the relevant angular and energy range.

This report presents a summary of the physics accessible at $\widetilde{\mathsf{P}\mathsf{A}\mathsf{N}\mathsf{D}\mathsf{A}}$ and what performance can be expected.

arXiv:0903.3905

II. Discovery by precision and exploration

Production all exotic and non-exotic quantum numbers accessible with a recoil

- high discovery potential
- associated, access to all quantum numbers (exotic)

all quantum numbers possible

Formation all non-exotic quantum numbers accessible

- not only limited to J^{PC} = 1⁻⁻ as e⁺e⁻ colliders
- precision physics of known states
- resonant, high statistics, extremely good precision in mass and width

quantum numbers like pp

antiproton probe unique and decisive

Hidden-charm spectroscopy

Hidden-charm spectroscopy

- line shape of X(3872)
- neutral+charged Z-states
- hidden-charm pentaquark
- X,Y,Z decays
- search for h_c', ³F₄, …
- spin-parity/mass&width of ³D₂

- line shape/width of the hc
- radiative decays (multipole)
- light-quark spectroscopy

Line-shape study of the X(3872)

Resonance scanning

Energy scan with e^+e^- :energy resolution1-2 MeV (primarily JPC=1--)Energy scan with $p\overline{p}$:energy resolution240 keV (E760/835@Fermilab) $\approx 50 \text{ keV}$ (PANDA@FAIR)

Resonance scanning

Klaus Goetzen et al.

Cross sections:

$$\sigma(\bar{p}p \to X(3872)) = 50 \ nb$$

$$\sigma_{\text{non-res}}(\bar{p}p \to J/\psi\pi^{+}\pi^{-}) = 1.2 \ nb$$

$$\sigma(\bar{p}p \to \text{inelastic}) = 46 \ mb$$

$$B(X(3872) \to J/\psi\pi^{+}\pi^{-}) = 5\%$$

Luminosity (MSV, HESRr):

 $1170 (nb \cdot day)^{-1}$

Energy resolution (HESRr):

 $\Delta E = 84 \text{ keV}$

20 points each 2 days data taking!

 $\bar{p}p \rightarrow X(3872) \rightarrow J/\psi \pi^+\pi^-$

Dan)da

Heavy-light systems: open-charm

Heavy-light systems: open-charm

Heavy-light systems: open-charm

$D_{s0}^{*}(2317)$ theoretical predictions

Different theoretical approaches, different interpretations	Γ(D _{s0} *(2317) ⁺ →D _s π⁰) (keV)
M. Nielsen, Phys. Lett. B 634, 35 (2006)	6 ± 2
P. Colangelo and F. De Fazio, Phys. Lett. B 570, 180 (2003)	7 ± 1
S. Godfrey, Phys. Lett. B 568, 254 (2003)	10 Pure \overline{cs} state
Fayyazuddin and Riazuddin, Phys. Rev. D 69, 114008 (2004)	16
W. A. Bardeen, E. J. Eichten and C. T. Hill, Phys. Rev. D 68, 054024 (2003)	21.5
J. Lu, X. L. Chen, W. Z. Deng and S. L. Zhu, Phys. Rev. D 73, 054012 (2006)	32
W. Wei, P. Z. Huang and S. L. Zhu, Phys. Rev. D 73, 034004 (2006)	39 ± 5
S. Ishida, M. Ishida, T. Komada, T. Maeda, M. Oda, K. Yamada and I. Yamauchi, AIP Conf. Proc. 717, 716 (2004)	15 - 70
H. Y. Cheng and W. S. Hou, Phys. Lett. B 566, 193 (2003)	10 - 100Tetraquark state
A. Faessler, T. Gutsche, V.E. Lyubovitskij, Y.L. Ma, Phys. Rev. D 76 (2007) 133	79.3 ± 32.6 DK had. molecule
M.F.M. Lutz, M. Soyeaur, Nucl. Phys. A 813, 14 (2008)	140 Dynamically gen. resonance
L. Liu, K. Orginos, F. K. Guo, C. Hanhart, Ulf-G. Meißner Phys. Rev. D 87, 014508 (2013)	133 ± 22 DK had. molecule
M. Cleven, H. W. Giesshammer, F. K. Guo, C. Hanhart, Ulf-G. Meißner Eur. Phys. J A (2014) 50 -149	NEW! Strong and radiative decays of $D_{s0}^{*}(2317)$ and $D_{s1}(2460)$
Experiment:	$\Gamma_{\rm tot} < 3.8{\rm MeV}$

A width measurement could be conclusive!

D_{s0}*(2317) energy scan

E. Prencipe, M. Mertens (FZJ)

D_{s0}*(2317) energy scan

E. Prencipe, M. Mertens (FZJ)

Toy MC study

<mark>√s</mark> [MeV]

Validity SU(4) approach? D.o.f. quarks+gluons or mesons+baryons?

How to extrapolate to excited open-charm states?

Cross section measurements of PANDA at phase-one will give insight!

Charm-baryon spectroscopy

Conceptually: heavy + light diquark system

- simplified baryonic system
- weak decay: narrow states
- heavy quark + chiral symmetry

Conceptually: heavy + light diquark system

- simplified baryonic system
- weak decay: narrow states
- heavy quark + chiral symmetry

probing di-quark correlations in baryons

- A lot of data on $\overline{p}p \to \overline{\Lambda}\Lambda$ near threshold, mainly from PS185 at LEAR*
- Very scarce data bank above 4 GeV
- Only a few bubble chamber events on $\overline{p}p \rightarrow \overline{\Xi}\Xi$
- No data on $\overline{p}p \to \overline{\Omega}\Omega$ nor $\overline{p}p \to \overline{\Lambda}_c\Lambda_c$

Karin Schoenning

Pric

PANDA is a hyperon factory!

Momentum (GeV/c)	Reaction	σ (μb)	Efficiency (%)	Rate (with 10 ³¹ cm ⁻² s ⁻¹)
1.64	$\overline{p}p \to \overline{\Lambda}\Lambda$	64	11	29 s ⁻¹
4	$\overline{p}p \to \overline{\Lambda}\Sigma^o$	~40	~30	50 s ⁻¹
4	$\overline{p}p \rightarrow \overline{\Xi}^+ \Xi^-$	~2	~20	1.5 s⁻¹
12	$\overline{p}p \rightarrow \overline{\Omega}^+ \Omega^-$	~0.002	~30	~4 h ⁻¹
12	$\overline{p}p \rightarrow \overline{\Lambda}_c^- \Lambda_c^+$	~0.1	~35	~2 day-1

Gain factor 100 in inclusive mode; Feasibility studies are underway!

Karin Schoenning

The "magic" of antiprotons

III. Technological innovation

Needle-in-a-haystack

Detector capabilities

The PANDA detector

~13 m

Danda

Prospects of Charm Physics at PANDA

Prospects of Charm Physics at PANDA

To take away, PANDA ...

... offers a versatile program in hidden/open-charm using antiprotons.
... aims to start in 2025 (phase-one) with a reduced luminosity.
... with the potential to perform unique studies of "exotic" states.
... and to study the production dynamics of charm hadrons.
... needs help in finding reliable estimates of antiproton-p couplings.

http://www-panda.gsi.de/ j.g.messchendorp@rug.nl

Collaboration

UniVPM Ancona U Basel **IHEP Beijing U** Bochum U Bonn **U** Brescia **IFIN-HH Bucharest** AGH UST Cracow **IEJ PAN Cracow** JU Cracow **U** Cracow FAIR Darmstadt **GSI** Darmstadt JINR Dubna U Edinburgh U Erlangen **NWU Evanston** U & INFN Ferrara

FIAS Frankfurt U Frankfurt **LNF-INFN Frascati** U & INFN Genova U Gießen **U** Glasgow BITS Pilani KKBGC, Goa **KVI** Groningen Sadar Patel U, Gujart Gauhati U, Guwahati USTC Hefei **URZ** Heidelberg **FH** Iserlohn FZ Jülich IMP Lanzhou **INFN** Legnaro U Lund HI Mainz

U Mainz **INP** Minsk **ITEP Moscow** MPEI Moscow **BARC Mumbai** U Münster Nankai U **BINP Novosibirsk** Novosibirsk State U **IPN** Orsay U Wisconsin, Oshkosh U & INFN Pavia Charles U, Prague Czech TU, Prague **IHFP** Protvino Irfu Saclay U of Sidney

PNPI St. Petersburg West Bohemian U, Pilzen **KTH Stockholm U** Stockholm SUT, Nakhon Ratchasima **SVNIT Surat-Gujarat** S Gujarat U, Surat-Gujarat FSU Tallahassee U & INFN Torino Politecnico di Torino U & INFN Trieste U Uppsala **U** Valencia **SMI** Vienna U Visva-Bharati **SINS Warsaw**

more than 460 physicists from from 75 institutions in 19 countries