

1

H⁻ beam formation and electron dumping strategies

Taneli Kalvas

Department of Physics, University of Jyväskylä

5.9.2018, 6th International Symposium on Negative Ions, Beams and Sources, Novosibirsk

- Introduction to negative ion plasma extraction codes
- Beam formation studies with the PELLIS ion source
- CERN Linac4 H⁻ simulations
- Deviation of model and potential corrections
- Outlook

2

Background

Development of H⁻ extraction systems:

- Plasma modelling, PIC-MCC
- Extraction codes
- Experimental work

Background

Modelling negative ion extraction from plasma volume

Assumption: $\phi = 0$ V near the extraction:

Very simplified but allows systematics to be done due to fast computation (~1 h for 10^7 node 3D problem), which is not possible by PIC methods.

R. Becker, Rev. Sci. Instrum. 75, 1723 (2004) and R. Becker, AIP Conf. Proc. 763, 194 (2005).

JYFL PELLIS ion source

Filament-driven H⁻ ion source

- CW volume production
- Low-emittance beams <100 μ A
- ø2 mm plasma aperture

-10 kV

10 -

5

0

-5

-10

0

x (mm)

• Low aberrations, low space charge forces

20

JYFL PELLIS ion source

Effect of filter magnet

Effect of pressure

Measured emittance curve

5 kV plasma to puller electrode voltage Filter magnet at 1.8 A, e/H^- ratio ~ 20

Measured emittance curve

5 kV plasma to puller electrode voltage Filter magnet at 1.8 A, e/H^- ratio ~ 20

Plasma model failure

Modelling of ions ~ok For electrons, physical processes are not properly modelled

Plasma model failure

Modelling of ions ok For electrons, physical processes are not properly modelled

5 kV plasma to puller electrode voltage Filter magnet at 1.8 A, e/H^- ratio ~ 20

H⁻ equal current

$$\rho = \frac{J}{v} \qquad v = \sqrt{\frac{2 q U}{m}}$$

$$\rho_{\text{tot}} = \rho_{H^{-}} + \rho_{e} = \frac{J_{H^{-}}}{v_{H^{-}}} + \frac{J_{e}}{v_{e}} \qquad J_{e} = R_{ec} J_{e}^{*} = R_{ec} R_{ei} J_{H^{-}}$$

$$\rho_{\text{tot}} \propto J_{H^{-}} (1 + R_{ec} R_{ei} \sqrt{m_{e}/m_{H^{-}}}) \qquad \sqrt{m_{H^{-}}/m_{e}} \approx 43$$

$$I_{eq} = I_{H^{-}} + R_{ec} I_{e}^{*} \sqrt{m_{e}/m_{H^{-}}}$$

Total effect on space charge

$$\rho = \frac{J}{v} \qquad v = \sqrt{\frac{2 q U}{m}}$$

$$\rho_{\text{tot}} = \rho_{H^{-}} + \rho_{e} = \frac{J_{H^{-}}}{v_{H^{-}}} + \frac{J_{e}}{v_{e}} \qquad J_{e} = R_{ec} J_{e}^{*} = R_{ec} R_{ei} J_{H^{-}}$$

$$\rho_{\text{tot}} \propto J_{H^{-}} (1 + R_{ec} R_{ei} \sqrt{m_{e}/m_{H^{-}}}) \qquad \sqrt{m_{H^{-}}/m_{e}} \approx 43$$

$$I_{eq} = I_{H^{-}} + R_{ec} I_{e}^{*} \sqrt{m_{e}/m_{H^{-}}}$$

$$R_{\text{tot}} = \frac{\rho_{\text{tot}}}{\rho_{\text{tot}}^{*}} = \frac{J_{H^{-}} (1 + R_{ec} R_{ei} \sqrt{m_{e}/m_{H^{-}}})}{J_{H^{-}} (1 + R_{ei} \sqrt{m_{e}/m_{H^{-}}})}$$

$$R_{ei} = 20, R_{ec} = 3 \rightarrow R_{tot} = 1.6$$

Stripping?

Phase space distribution

Measured and simulated (x,x') phase space patterns for 40 μA extracted H $^-$ beam with 5 kV puller voltage

CERN Linac4

Striving for 50 mA $\rm H^{\scriptscriptstyle -}$ at 45 keV with 0.25 mm mrad rms-emittance normalized

CERN Linac4 paper

Nuclear Inst. and Methods in Physics Research, A 904 (2018) 179-187

H⁻ extraction systems for CERN's Linac4 H⁻ ion source

D.A. Fink^{a,*}, T. Kalvas^b, J. Lettry^a, Ø. Midttun^c, D. Noll^a

Emittance comparison

Measurements Linac4 teststand:

ISO03b, 50 mA H⁻ ø6.5 mm aperture

Contributions to emittance

24

Backtracked phase space at z=3 mm

Uncesiated IS03c: 20 mA H⁻, e^{-}/H^{-} ratio 15–20

Emittance curves

Beam emittance as a function of current for IS03b ø5.5 aperture

CERN Linac4 IS03c: phase space data backtracked to z=3 mm

Emittance curves

Emittance curves

Emittance curves for total space charge coefficient R_{tot} =1.5, Rei = 2.5 \rightarrow Rec = 10

Emittance comparison for SNS

Magnetic field comparison

Linac4 IS03b, higher extraction field?

UNIVERSITY OF JYVÄSKYLÄ

Linac4 IS03b, higher extraction field?

UNIVERSITY OF JYVÄSKYLÄ

Linac4/DESY

DESY source at 45 keV producing ~23 mA H⁻ and >1 A of electrons

O. Midttun, Rev. Sci. Instrum 83, 02B710 (2012)

Space charge blowup

Using the paraxial approximation for calculating beam size after electron dump at z=30 mm

Sight towards the horizon

Studies on IBSimu plasma model

- Further studies with PELLIS:
 - Effect of magnetic field on the beam formation optimum?
- Data from PIC-codes
- Further studies on beam formation at CERN and RAL

Roadmap for Linac4

- A way towards lower emittance:

 - Better predictive power on IBSimuHigher energy dumping and/or larger plasma apertures