



### FLUID MODELING OF NEGATIVE HYDROGEN ION SOURCES

This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

Seth A. Veitzer - Tech-X Corp. Peter H. Stoltz – Tech-X Corp.



## We are using a plasma fluid modeling tool to simulate the performance of ion sources





**NIBS 2018** 

A computational fluid dynamics (CFD) code, unstructured meshes, charged or neutral fluids

id dynamics ctured r neutral We have used USim to model plasma interaction with antenna surfaces in SNS H<sup>-</sup> ion source; Help improve internal antenna design for improved reliability at SNS



#### **Multi-fluid electromagnetic**





Multi fluid, spectral EM Appropriate to higher density, ICP Computationally intensive Discussed at NIBS 2016

Multi-fluid, electrostatic Appropriate to lower density Computationally simple *Today's presentation*  700



USim solves flux-conservative equation sets using finite volume algorithms

$$\frac{\partial q}{\partial t} + \nabla \cdot F(q) = S \xrightarrow[x]{F(x) \longrightarrow F(x + \Delta x)}{x}$$

One example is convective drift equations\*:

Many of the USim algorithms are described in detail in this book

CAMBRIDGE TEXTS

Finite Volume Methods for Hyperbolic Problems

**RANDALL J. LEVEQUE** 

$$\begin{aligned} \frac{\partial n_e}{\partial t} + \nabla \cdot n_e \mu_e E &= S_n \\ \frac{\partial u_e}{\partial t} + \nabla \cdot u_e \gamma \mu_e E &= S_u \end{aligned}$$

NIBS 2018

\*USim includes non-hyperbolic terms, like diffusion, separately with algorithms like STS SIMULATIONS EMPOWERING YOUR INNOVATIONS



The drift-diffusion model works best with:

- *High pressure* (collision frequency larger than plasma frequency implies  $v \sim E$ )
- Low voltage (drift velocity smaller than thermal velocity implies v ~ E)
- Low plasma density (Debye length long implies field penetrates into plasma)

| For example, assuming: | $T_e \sim 4 \text{ eV}, v_{th} = 10^6 \text{ m/s},$ | E ~ 1 kV/m, $\sigma_{\text{elastic}}$ = 10 <sup>-19</sup> m <sup>-2</sup> |
|------------------------|-----------------------------------------------------|---------------------------------------------------------------------------|
|------------------------|-----------------------------------------------------|---------------------------------------------------------------------------|

| Neutral<br>pressure<br>(torr) | Collision<br>frequency<br>(s <sup>-1</sup> ) | Mean Free<br>Path<br>(m) | Electron Drift<br>Velocity<br>(m/s) | Plasma<br>density<br>(m <sup>-3</sup> ) | Plasma<br>frequency<br>(s <sup>-1</sup> ) | Debye<br>length<br>(m) | Drift<br>diffusion<br>applicable? |
|-------------------------------|----------------------------------------------|--------------------------|-------------------------------------|-----------------------------------------|-------------------------------------------|------------------------|-----------------------------------|
| 10                            | 3x10 <sup>10</sup>                           | 30x10 <sup>-6</sup>      | 10 <sup>4</sup>                     | <b>10</b> <sup>12</sup>                 | 10 <sup>7</sup>                           | 0.01                   | Y                                 |
| 0.1                           | 3x10 <sup>8</sup>                            | 3x10 <sup>-3</sup>       | 10 <sup>6</sup>                     | <b>10</b> <sup>14</sup>                 | 10 <sup>8</sup>                           | 0.001                  | Maybe                             |
| 0.01                          | 3x10 <sup>7</sup>                            | 0.03                     | 10 <sup>7</sup>                     | <b>10</b> <sup>15</sup>                 | 3x10 <sup>8</sup>                         | 3x10 <sup>-4</sup>     | N                                 |



$$\frac{\partial n_e}{\partial t} + \nabla \cdot n_e \mu_e E - \nabla \cdot D_n \nabla n_e = S_n$$

$$\frac{\partial u_e}{\partial t} + \nabla \cdot u_e \gamma \mu_e E - \nabla \cdot D_u \nabla n_u = S_u$$

$$\mu_e = \frac{q}{mN_0\sigma_0 v_{th}} \approx \frac{4x10^{24}}{N_0}$$

- USim includes an RK-like super-time-stepping scheme for stepping over diffusion time scales
- USim can also include any number of ion species in the same way SIMULATIONS EMPOWERING YOUR INNOVATIONS



 $S_n = n_e N_0 k$ 

ionization density source

$$S_u = n_e \mu I$$

$$D_n E \nabla n_e$$
 –

-  $n_e N_0 k \epsilon$ 

convective joule heating

diffusive joule heating

ionization energy losses

- We can track an arbitrary number of these reactions
- k can be temperature dependent



| boundary<br>conditions                  | simulation domain                                                                                             |
|-----------------------------------------|---------------------------------------------------------------------------------------------------------------|
| constant<br>supply of<br>n <sub>e</sub> | p = 0.1 Torr<br>N <sub>0</sub> =3.0x10 <sup>21</sup> m <sup>-3</sup><br>$E_0=1.0$ kV/m<br>$v_d \sim 10^6$ m/s |

• We assume a reservoir of electrons with  $n_e \sim 5.0 \times 10^{12} \text{ m}^{-3}$ and Te = 2 eV on the left boundary



# First test case includes H<sub>2</sub> ground state impact ionization





- We evolve system to steady steady (a few electron crossing times)
- Ionization adds density, diffusion acts to smooth
- Ionization energy loss acts to cool the plasma



#### **Reaction Sources**



 $e^- + H \rightarrow H + + 2e^-$ 

 $H_2^+ + H \rightarrow H_2 + H +$ 

 $H^- + H \rightarrow H_2 + e^-$ 

5

5

6

4

е

4

 $+H \rightarrow e^{-} + H(n=2)$ 

 $H \rightarrow e^- + H(n = 3)$ 

6



SIMULATIONS EMPOWERING YOUR INNOVATIONS



| boundary<br>conditions                  | simulation domain                                                                                             |
|-----------------------------------------|---------------------------------------------------------------------------------------------------------------|
| constant<br>supply of<br>n <sub>e</sub> | p = 0.1 Torr<br>N <sub>0</sub> =3.0x10 <sup>21</sup> m <sup>-3</sup><br>$E_0=1.0$ kV/m<br>$v_d \sim 10^6$ m/s |

- We assume a reservoir of electrons with  $n_e \sim 5.0 \times 10^{12} \text{ m}^{-3}$ and Te = 2 eV on the left
- Add reactions
- Increase physical dimensions
   Simulations empowering your innovations







### **Conclusions and Next Steps**



- We can use fluid models to simulate negative hydrogen ion sources with realistic plasma chemistry (an ongoing effort!)
- In some cases, a drift diffusion model is appropriate for this modeling
- 2-Dimensional cylindrical modeling with Hydrogenic chemistry
  - -- Include RF power deposition
- Include wall production of H<sup>-</sup>
- Deuterium plasma chemistry?
- Alternative Methods for speeding up ion source simulations, for instance, ECRs
  - -- Speed Limited Particle-In-Cell Algorithms



### **Next Steps**



SPEED-LIMITED PARTICLE-IN-CELL MODELING OF PLASMAS: SPEEDING UP PIC MODELING BY SLOWING DOWN PARTICLES

Thomas G. Jenkins

OUR INNOVATION

with Andrew M. Chap John R. Cary Tech-X Corporation

Gregory R. Werner University of Colorado-Boulder

Funded by U.S. Department of Energy, SBIR Phase I/II Award DE-SC0015762

Tech-X Worldwide Simulation Summit Boulder, Colorado August 21, 2018

- Fastest electrons set the timestep in PIC, even if their kinetics are not of interest
- SLPIC formalizes how to transform PIC equations of motion so that fast particles are accurately simulated without excessive time step restrictions

