

Uniformity of the Large Beam of ELISE during Cs Conditioning

F. Bonomo, I. Mario, D. Wünderlich, U. Fantz and the NNBI Team

6th International symposium on Negative Ions, Beams and Sources 3 – 7 September 2018 Budker INP, Novosibirsk, Russia

Motivation A large beam for ITER

ITER NBI:

- Accelerated current of 40 A in D @1MeV / 46 A in H @870keV 0.3 Pa filling pressure
- Electron ion ratio < 1
- Long pulses (3600 s for D, 1000 s for H)
- Large beam:
 - source of \approx 2 m x 1 m; extraction area: 0.2 m²
 - uniformity better than 90% (beamlets)
 - beam core divergence smaller than 7 mrad (0.4 deg)

ELISE test facility:

- Half size of the ITER-NBI source in vertical direction
- Large beam:
 - source of $\approx 1 \text{ m x 1 m}$; extraction area: 0.1 m²
 - so far, the only large source with extraction in operation

→ what can we learn about a large beam for the ITER NBI?

Outline

- ELISE test facility
 - Beam diagnostics
- Large beam features during Cs conditioning process of the source (short pulses, H)
 - Volume operation
 - Cs conditioning phase
- Beam optimization
 - Global beam uniformity better than 90%
 - Beam optics tuning
- Summary

- Half of the ITER NBI in vertical direction
 - 4 drivers up to 75kW/driver

F.Bonomo

ELISE test facility NNBI source & ITER targets

ELISE ITER targets:

D. Wünderlich 3th Sept 2018 @ 11:10

- Plasma duration (3600s D & 1000s H)
- Extracted & Accelerated currents:
 - ✓ for H (1000 s)
 - For D (3600 s) only 65%
 - ✓ Ratio co-extracted electrons/ions <1</p>
- Uniformity
 - top/bottom beam segments or beamlet groups
- Beam divergence
 - no ITER divergences (> 1 deg) BUT large beam investigation

ELISE Beam Diagnostics Electrical current measurements

- Electrical measurements of currents
 - Total extracted negative ion current (*I_{ex}*)
 - Top/bottom currents on EG (mostly electrons)
 - Top/bottom currents on GG

ELISE Beam Diagnostics Beam Emission Spectroscopy

- Electrical measurements of currents
- Beam Emission Spectroscopy diagnostic (BES)

- Beam intersection: 2.7 m from GG
- 50 deg angle between LOS & beam
- H_{α} Doppler peak spectra analysis
 - Beam divergence from Doppler peak
 - Stripping losses

۲

• Vertical beam intensity profile

ELISE Beam Diagnostics Diagnostic calorimeter

- Electrical measurements of currents
- Beam Emission Spectroscopy diagnostic (BES)
- Diagnostic calorimeter

- 3.5 m from GG
- Water calorimetry
- 30 x 30 inertially cooled blocks (4 cm x 4 cm)
- 48 thermocouples embedded

ELISE Beam Diagnostics Diagnostic calorimeter

- Electrical measurements of currents
- Beam Emission Spectroscopy diagnostic (BES)
- Diagnostic calorimeter

- 3.5 m from GG
- Water calorimetry
- 30 x 30 inertially cooled blocks (4 cm x 4 cm)
- 48 thermocouples embedded
- Black coating for Infra-Red (IR) analysis
 - Absolutely calibrated (thermocouples)
 - 2D map of the beam power
 - accelerated current (global & local)
 via 8 2D-gaussian fitting, one for
 each beamlet group
 - $\rightarrow j_{acc}$ for the top/bottom grid segments

• no Cs into the source

• no Cs into the source

	0		0	
				>
0				

	ŏ		č	
-			 	
2				
				2
	0		-	

ELISE grid system

 volume
 Cs evolution
 caesiated

 6th NIBS, Novosibirsk, 3rd-7th September 2018

• no Cs into the source

- no Cs into the source
- To reduce the co-extracted electrons:
 - reduced parameters (low U_{ex} & RF power) $\rightarrow j_{ex} = 1 3 mA/cm^2$

- no Cs into the source
- To reduce the co-extracted electrons:
 - reduced parameters (low U_{ex} & RF power)
 - high FF + high bias potential
 - ightarrow large upward vertical drift in the plasma
 - \rightarrow FF: downward beam deflection

$$\rightarrow j_{ex} = 1 - 3 \, mA/cm^2$$

- no Cs into the source
- To reduce the co-extracted electrons:
 - reduced parameters (low U_{ex} & RF power)
 - high FF + high bias potential
 - ightarrow large upward vertical drift in the plasma
 - \rightarrow FF: downward beam deflection

$$\rightarrow j_{ex} = 1 - 3 \text{ mA/cm}^2$$

- no Cs into the source
- To reduce the co-extracted electrons:
 - reduced parameters (low U_{ex} & RF power) $\rightarrow j_{ex} = 1 3 \text{ mA/cm}^2$
 - high FF + high bias potential
 - \rightarrow large upward vertical drift in the plasma
 - → FF: downward beam deflection

- no Cs into the source
- To reduce the co-extracted electrons:
 - reduced parameters (low U_{ex} & RF power) $\rightarrow j_{ex} = 1 3 \text{ mA/cm}^2$
 - high FF + high bias potential
 - \rightarrow large upward vertical drift in the plasma
 - \rightarrow FF: downward beam deflection

Can the beam be vertically uniform during volume operation?

smaller FF \rightarrow more uniform beam...

Can the beam be vertically uniform during volume operation?

smaller FF \rightarrow more uniform beam...

...BUT not possible to get rid of the FF: too much co-extracted electrons!

IPP

Can the beam be vertically uniform during volume operation?

• smaller FF \rightarrow more uniform beam...

...BUT not possible to get rid of the FF: too much co-extracted electrons!

• independent settings of the RF power in the top/bottom generators

Can the beam be vertically uniform during volume operation?

• smaller FF \rightarrow more uniform beam...

...BUT not possible to get rid of the FF: too much co-extracted electrons!

independent settings of the RF power in the top/bottom generators

...BUT RF power limited to keep the co-extracted electron at a tolerable value!

Can the beam be vertically uniform during volume operation?

• smaller FF \rightarrow more uniform beam...

...BUT not possible to get rid of the FF: too much co-extracted electrons!

independent settings of the RF power in the top/bottom generators

...BUT RF power limited to keep the co-extracted electron at a tolerable value!

- Constant Cs evaporation rate for both ovens
- Steps of "constant parameters" from volume to higher performances
- Short pulses in hydrogen (9.5 s beam into a 20 s plasma pulse)

- Constant Cs evaporation rate for both ovens
- Steps of "constant parameters" from volume to higher performances
- Short pulses in hydrogen (9.5 s beam into a 20 s plasma pulse)

• After 4 days (1.5h plasma-on time)

 j_{ex} from 2 to 7 mA/cm² $j_{e} / j_{ex} < 1$

- Constant Cs evaporation rate for both ovens
- Steps of "constant parameters" from volume to higher performances
- Short pulses in hydrogen (9.5 s beam into a 20 s plasma pulse)

- Constant Cs evaporation rate for both ovens
- Steps of "constant parameters" from volume to higher performances
- Short pulses in hydrogen (9.5 s beam into a 20 s plasma pulse)

Constant Cs evaporation rate for both ovens

volume

- Steps of "constant parameters" from volume to higher performances
- Short pulses in hydrogen (9.5 s beam into a 20 s plasma pulse)

After 7 days (2.3h plasma-on time):

IR - beam intensity [a.u.]

 $j_{acc}^{BOTTOM} \approx j_{acc}^{TOP}$ but different optics

Extracted current density [mA/cm²]

30

20

10

25860

6th NIBS, Novosibirsk, 3rd-7th September 2018

- Constant Cs evaporation rate for both ovens
- Steps of "constant parameters" from volume to higher performances
- Short pulses in hydrogen (9.5 s beam into a 20 s plasma pulse)

- Constant Cs evaporation rate for both ovens
- Steps of "constant parameters" from volume to higher performances
- Short pulses in hydrogen (9.5 s beam into a 20 s plasma pulse)

BES measurements during Cs conditioning

• beam width decreases while j_{ex} increasing (divergence – perveance correlation)

F.Bonomo

BES measurements during Cs conditioning

- beam width decreases while j_{ex} increasing (divergence perveance correlation)
- top & bottom beam width decreases with different time scales

First 4 days of operation:

F.Bonomo

F.Bonomo

IPP

BES measurements during Cs conditioning

- beam width decreases while j_{ex} increasing (divergence perveance correlation)
- top & bottom beam width decreases with different time scales

First 4 days of operation:

BES confirm that the conditioning of the bottom

beam segment needs more plasma pulses!

- ELISE: global homogeneity in terms of top/bottom beam segments
 - top/bottom accelerated current *I_{acc}* at the calorimeter (via IR analysis)

6th NIBS, Novosibirsk, 3rd-7th September 2018

top/bottom beam divergence (BES)

In a good Cs conditioned source:

 top/bottom accelerated currents are usually well within the 10%

2. similar top/bottom beam divergence is instead more tricky to get

volume

1. Independent top/bottom RF power settings (RF top < RF bottom)

 $\rightarrow I_{acc}^{TOP} = I_{acc}^{BOTTOM}$

volume

oration

6th NIBS, Novosibirsk, 3rd-7th September 2018

caesiated

source

F.Bonomo

12/13

 \rightarrow $I_{acc}^{TOP} = I_{acc}^{BOTTOM}$

2. Effect of the bias potentials on the beam divergence profile

→ bias potentials change the flatness of the vertical divergence profile

12/13

F.Bonomo

 \rightarrow $I_{acc}^{TOP} = I_{acc}^{BOTTOM}$

2. Effect of the bias potentials on the beam divergence profile

→ bias potentials change the flatness of the vertical divergence profile

F.Bonomo

F.Bonomo

 \rightarrow $I_{acc}^{TOP} = I_{acc}^{BOTTOM}$

2. Effect of the bias potentials on the beam divergence profile

→ bias potentials change the flatness of the vertical divergence profile

1.

0.0

Horizontal position [m]

 \rightarrow bias potentials change the flatness of the vertical divergence profile

-0.4

-0.6

volume

-0.2

$\rightarrow I_{acc}^{TOP} = I_{acc}^{BOTTOM}$

Independent top/bottom RF power settings (RF top < RF bottom)

2. Effect of the bias potentials on the beam divergence profile

ELISE large beam Beam optimization /2

0.2

oration

0.4

0.6

caesiated

source

What have we learned so far?

• In **volume :**

Beam uniformity not possible by simply RF tuning

- In the **Cs conditioning phase**:
 - Long conditioning phase because of the potential rods
 - Top/bottom beam segments have different time-scales of conditioning
 - bottom beam segment needs more plasma pulses
- Large beam optimization in a well conditioned source:
 - Very good uniformity for the top/bottom accelerated currents
 - ▶ fine tuning by independent RF power settings for different segments
 → very useful knob for ITER
 - Some difficulties to keep the same top/bottom beam optics
 - bias potentials help to change the vertical profile of the beam divergence
 → very useful knob for ITER