

Study of baryon form factor at BESIII Bingxin Zhang On behalf of BESIII collaboration

Dec. 16-18 2019

BINP-IHEP Seminar @BINP SB RAS

Outline

- Introduction
- e⁺e⁻→pp̄ and nn̄ analysis
- $e^+e^- \rightarrow \Lambda \overline{\Lambda}$ and $\Lambda_c^+ \overline{\Lambda}_c^-$ analysis
- Summary & Outlook

Introduction(I) Electromagnetic Form Factors of the Nucleon

Electromagnetic form factors characterize the internal structure and dynamics of nucleon.

Combination of Pauli and Dirac FFs leads to the so called Sachs FFs:

 $G_{\rm F} = F_1(q^2) + (q^2/4M^2)F_2(q^2)$

 $G_M = F_1(q^2) + F_2(q^2)$

rimentally the Form Factors are determined?

Time-like FF's are complex, $G_E = |G_E|e^{i\Phi_E}$, $G_M = |G_M|e^{i\Phi_M}$ Relative phase: $\Delta \Phi(q^2) = \Phi_E - \Phi_M$ \succ A non-zero phase has polarization effect on the Baryons, even for unpolarized initial state: Р

```
_{v} \propto \sin \Delta \Phi
  2019-12-18
```

Introduction(II)

Hyperons – key to the strong interaction

proton

Systems with strangeness

u

u

- − Scale: $m_s \approx 100 \text{ MeV} \sim \Lambda_{\text{OCD}} \approx 200 \text{ MeV}$: Relevant degrees of freedom?
- Probes QCD in the confinement domain.
- Systems with charm ٠
 - Scale: $m_c \approx 1300$ MeV: Quarks and gluons more relevant.
 - Probes QCD just below pQCD.
- The angular distribution of daughter baryon from Hyperon weak decay is: $\frac{d\sigma}{d\Omega} \propto 1 + \alpha_{\Lambda} P_y \cdot \hat{q}$
 - α_{A} : asymmetry parameter
 - \hat{q} : unit vector along the daughter baryon in hyperon rest frame

Polarization experimentally accessible by the weak, parity violating decay

Example: Angular distribution of $\Lambda \rightarrow p\pi^{-}$ $I(\cos\theta_{\rm p}) = N(1 + \alpha_{\Lambda} P_{\Lambda} \cos\theta_{\rm p})$ $P_{\Lambda} = P_{\Lambda} (\cos \theta_{\Lambda})$: polarisation (production) α_{Λ} : asymmetry parameter (decay)

BESIII data samples

Measurement of nucleon form factor by studying $e^+e^- \rightarrow p\bar{p}$

Selection Criteria

study of baryon form factor at BESIII

Background analysis

	E_{cn}	n = 2	.2324	$(\pounds = 2.634 \text{ pb}^{-1})$		E_{c}	m =	3.08	$(\pounds=30.73 \text{ pb}^{-1})$
Bkg	N_{gen}^{MC}	N_{sur}^{MC}	$\sigma(nb)$	$N_{uplimit}^{data}(90\% \text{ CL})$	Bkg	N_{gen}^{MC}	N_{sur}^{MC}	$\sigma(nb)$	$N_{uplimit}^{data}(90\% \text{ CL})$
e^+e^-	9.6×10^{6}	0	1434.01	< 0.96	e^+e^-	$3.99{ imes}10^7$	1	756.86	< 2.54
$\mu^+\mu^-$	7.0×10^{5}	0	17.41	< 0.16	$\mu^+\mu^-$	$1.50{ imes}10^6$	0	8.45	< 0.42
$\gamma\gamma$	$1.9 imes 10^6$	0	70.44	< 0.24	$\gamma\gamma$	4.5×10^{6}	0	37.05	< 0.62
$\pi^+\pi^-$	$1.0 imes 10^5$	0	0.173	< 0.01	$\pi^+\pi^-$	1.0×10^5	0	< 0.111	< 0.02
K^+K^-	$1.0 imes 10^5$	0	0.138	< 0.008	K^+K^-	1.0×10^5	0	0.0933	< 0.02
$p\bar{p}\pi^0$	$1.0 imes 10^5$	0	< 0.1	< 0.006	$p\bar{p}\pi^0$	1.0×10^5	0	< 0.1	< 0.07
$p\bar{p}\pi^0\pi^0$	$1.0 imes 10^5$	0	< 0.1	< 0.006	$p\bar{p}\pi^{0}\pi^{0}$	1.0×10^5	0	< 0.1	< 0.07
$\Lambda\bar{\Lambda}$	1.0×10^5	0	0.4	< 0.02	$\Lambda^0 \bar{\Lambda^0}$	1.0×10^5	0	0.002	0.001
						•			
	E_{cr}	n = 3	.65	$(\pounds\!\!=\!\!48.823~{\rm pb}^{-1})$					1
Bleet	MMC	MMC	$\sigma(mh)$	Ndata (00% CI)	E_{cm}	(GeV) A	Jata	N^{data}	Computed

E_{cm} (GeV)	N_{pro}^{data}	N_{sur}^{data}
2.40	9412203	0
3.40	13191714	0

Separated
beam data

Background	l events are	כ
almost negl	igible	

	E_{cm}	= 3.	65	$(\pounds\!\!=\!\!48.823~{\rm pb}^{-1})$
Bkg	N_{gen}^{MC}	N^{MC}_{sur}	$\sigma(nb)$	N_{mix}^{data} (90% CL)
e^+e^-	$4.44{ imes}10^7$	1	537.46	< 2.58
$\mu^+\mu^-$	1.5×10^{6}	0	6.50	< 0.52
$\gamma\gamma$	5.5×10^{6}	0	26.33	< 0.57
$\pi^+\pi^-$	1.0×10^5	0	0.044	< 0.01
K^+K^-	1.0×10^5	0	0.0400	< 0.01
$p\bar{p}\pi^0$	1.0×10^5	0	< 0.1	< 0.1
$p\bar{p}\pi^{0}\pi^{0}$	$1.0 imes 10^5$	0	< 0.1	< 0.1
$\Lambda^0 \bar{\Lambda^0}$	$1.0 imes 10^5$	0	0.002	< 0.002
$\tau \tau$	$1.0 imes 10^6$	0	2.0	< 0.1

Result of analysis

Energy scan method

) $L (\text{pb}^{-1}) = \sigma_{\text{Born}} (\text{pb}) = G (\times 10^{-2})$	
$2.63 353.0 \pm 14.3 \pm 15.5 16.10 \pm 0.32 \pm 0.35$	
3.42 $132.7 \pm 7.7 \pm 8.1$ $10.07 \pm 0.29 \pm 0.31$	
N_{obs} 3.75 21.3 ± 3.0 ± 2.8 4.45 ± 0.31 ± 0.29 N_{obs}	-N _{bkg}
$1 14.90 10.1 \pm 1.1 \pm 0.6 3.29 \pm 0.17 \pm 0.09 \bullet_{Born} = -6 6 6 6 6 6 6 6 6 6 $	
$1 15.06 8.5 \pm 1.0 \pm 0.6 3.03 \pm 0.17 \pm 0.10 \qquad \qquad$	I+0)
7 30.73 $8.9 \pm 0.7 \pm 0.5$ $3.11 \pm 0.12 \pm 0.08$	
$4 1.73 1.8 \pm 1.3 \pm 0.4 1.54 \pm 0.55 \pm 0.18$	
0 3.61 $2.2 \pm 1.0 \pm 0.6$ $1.73 \pm 0.39 \pm 0.22$	Down
$3 18.15 2.0 \pm 0.4 \pm 0.6 1.67 \pm 0.17 \pm 0.23$ G =	
4 9.55 $2.2 \pm 0.6 \pm 0.9$ $1.78 \pm 0.25 \pm 0.35$	$2m_n^2$
) $48.82 1.1 \pm 0.2 \pm 0.1 1.26 \pm 0.11 \pm 0.07$ 86.83 $\cdot \frac{P}{C}$	$(1 + \frac{P}{C})$
7 4.59 $2.2 \pm 0.9 \pm 0.8$ $1.84 \pm 0.37 \pm 0.33$	5

Comparison with other Experiment

|G_E| and |G_M| extracted individually
 Precision between 11% and 28%
 Consistent with previous one at same q-range
 12 c.m. energy

Phys. Rev. D91, 112004 (2015)

ISR-Tagged Analysis for Proton

ISR method

➤ Background evaluation

200

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Results from ISR-Tagged Analysis

Systematic uncertainty included \succ

SA: Small polar Angle of ISR photon

Measurement of nucleon form factor by studying $e^+e^- \rightarrow n\bar{n}$

Neutron Form Factors in the Space-and Time-Like Region

• The electric and magnetic FFs had been measured in the SL region while not in the TL region.

Analysis Strategy

Category A

Selection	Value	Expression
N _{charged}	0	number of charged tracks without constraint on the vertex
E	[0.5, 2.0] GeV	energy deposition of antineutron candidate (EMC1)
N ⁵⁰	[30, 140]	number of hits in 50^{o} cone around antineutron
$\cos \theta$	[-0.7, 0.7]	cosine of polar angle of antineutron
$\Delta \phi$ (TOF1,EMC1)	$[-3\phi_{c}, 3\phi_{c}]$ rad.	azimuthal constraints on antineutron
θ (TOF1,EMC1)	[-0.5, 0.5] rad.	crossing angle between EMC1 and TOF1 for antineutron
$\Delta \phi$ (TOF2,EMC1)	$[-6\phi_c, 6\phi_c]$ rad.	azimuthal constraints on neutron
ΔT_n	[-4, 4] ns	the measured time difference from the expected for neutron
En	(, 0.7) [0.06, 0.7] GeV	energy deposition in EMC2 of neutron
$\theta_{TOF2',EMC1}$	3.0 [2.98] rad.	crossing angle between TOF2' of neutron and EMC1 of antineutron
ΔT	[-4.0, 4.0] ns	time difference between TOF2' of neutron and TOF1 of antineutron
$\theta_{EMC2,EMC1}$	[3.0,] rad.	crossing angle between EMC2 of neutron and EMC1 of antineutron

Category B

Selection	Value	Expression
$N_{charged}$	0	number of charged tracks without constraint on the vertex
En	[0.5, 2.0] GeV	energy deposition of antineutron candidate (EMC1)
$\cos heta$	[-0.7, 0.7]	cosine of polar angle of antineutron
$\Delta \phi_{(TOF1, EMC1)}$	$[-3\phi_c, 3\phi_c]$ rad.	azimuthal constraints on antineutron
$\theta_{(TOF1, EMC1)}$	[-0.5, 0.5] rad.	crossing angle between EMC1 and TOF1 for antineutron
$ \Delta T_{\gamma} $	> 0.5 ns	the measured time difference in hypothesis of photon
BDT	> 0.1	the BDT discriminator with seven \bar{n} related variables
En	[0.04/0.06, 0.6] GeV	energy deposition of neutron candidate ($\sqrt{s} \leq$ / $>$ 2.3094 GeV
ll _{muc}	< 6	last layer with hits in the MUC
$\triangleleft \frac{n}{n}$	$>150^{\circ}$	opening angle between the n and \bar{n} candidate in the calorimeter

Category C

Selection	Value	Expression
N _{charged}	== 0	number of charged tracks without constrain on the vertex
En	[0.5, 2.0] GeV	energy deposition of antineutron candidate in the calorimeter
2 moment $_{\overline{n}}$	$>$ 20 cm 2	second moment of antineutron candidate, 2 moment _{$\bar{n} = \sum_{i} E_{i}r_{i}^{2}/E_{i}$}
N ⁵⁰ HIT	[35, 100]	number of hits in 50° cone around the $\bar{\rm n}$ candidate
En	[0.04/0.06, 0.6] GeV	energy deposition of neutron candidate ($\sqrt{s} \leq$ $/$ $>$ 2.3094 GeV
E _{extra}	<0.15 GeV	$E_{extra} = E_{total} - E_{\overline{n}}^{50^{o}cone} - E_{n}^{20^{o}cone}$
ll _{muc}	< 6	last layer with hits in the MUC
$<\frac{n}{n}$	> 150 ⁰	opening angle between the \boldsymbol{n} and $\bar{\boldsymbol{n}}$ candidate in the calorimeter

study of baryon form factor at BESIII

Extraction of Signal Yield

• The signal yields in the 3 categories are extracted by the fit where the variables used for the fit:

2019-12-18

study of baryon form factor at BESIII

Cross section & FF calculation

Born Cross Section and Effective Form Factors

• Experimentally, the Born cross section of the $e^+e^- \rightarrow n\bar{n}$ process is determined via:

$$\sigma_{Born} = \frac{N_{data}}{\epsilon_{n\bar{n}}^{MC} \times \mathcal{C}_{dm} \times \mathcal{C}_{trg} \times (1+\delta) \times \mathcal{L}_{Int}}$$

 N_{data} : Number of selected nn data events, C_{dm} : data/MC efficiency correction, C_{trg} : trigger efficiency correction. 1 + δ : Radiative correction and vacuum polarisation (1 + δ), ϵ_{nn}^{MC} : MC Efficiency, \mathcal{L}_{Int} : Luminosity

• Theoretically, the Born cross section of the $e^+e^- \rightarrow n\bar{n}$ is expressed in this form:

$$\sigma_{Born} = \frac{4\pi \alpha^2 \beta}{3q^2} [|G_M|^2 + \frac{2m_n^2}{q^2} |G_E|^2]$$

• The effective form factor is defined as a linear compination of G_E and G_M FFs which is proportional to the square root of the nucleon pair production cross section:

$$|G_{eff}| = (rac{3q^2}{4\pi lpha^2 eta (1 + rac{2m_n^2}{q^2})})^{rac{1}{2}} \sqrt{\sigma_{Born}}$$

Born Cross Section and Effective Form Factors

Oscillation Behavior in the Effective Form Factor

- An oscillation of the effective form factor of proton is observed by BaBar and then confirmed by BESIII.
- What about the effective form factor of the neutron? Does a similar oscillation exist?

- An oscillation behavior is observed in the effective form factor of the neutron.
- **•** The oscillation is observed with a relative phase shift of \sim 235° compare to that for the proton.

study of baryon form factor at BESIII

• The magnetic form factor has been determined for the first time in the TL region at $\sqrt{s}>2.0$ GeV.

- The uncertainties of the magnetic form factor results are dominated by the statistical one.
- The statistical precision of the $|G_M^n|$ is 9.5% and 7.1% at $\sqrt{s} = 2.125$ and $\sqrt{s} = 2.394$ GeV.

Cross section measurement of $e^+e^- \rightarrow \Lambda \overline{\Lambda}$ with BESIII at 2.3960 GeV

Status on hyperon FFs

Hyperons structure

□ Electromagnetic From Factors (EMFFs)

- fundamental hadron structure observables
- describe the deviation from the point-like case
- related to the charge- and magnetization density

EMFFs of nucleon can be studied in:

- > elastic scattering, $e^-N \rightarrow e^-N$, space-like
- > annihilation, $e^+e^- \rightarrow N\bar{N}$, $N\bar{N} \rightarrow e^+e^-$, time-like

□ Hyperons are difficult to study in the space-like region

- they are unstable hyperon targets are unfeasible
- the quality of hyperon beams is in general not sufficient

• e^+e^- annihilation offers the best opportunity to study hyperon structure.

Data sample and event selection

$\sqrt{s}(\text{GeV})$	Run No.	Lumi.(pb ⁻¹) offline		
2.396	40459-40769	$66.869 \pm 0.017 \pm 0.461^{-1}$		

- Track level
 - > Polar angle: $|cos\theta| < 0.93$
 - Momentum should be less than 0.5 GeV
 - > At least 4 tracks
- $\hfill\square$ Tracks with $p < 0.2 {\rm GeV}$ are assigned to be $\pi^+\pi^-$
- \Box Tracks with p > 0.2 GeV are assigned to be $p\bar{p}$
- $\hfill\square$ Secondary vertex fit to reconstruct Λ and $\bar{\Lambda}$
- \Box Four constraint Kinematic fit to Λ and $\overline{\Lambda}$

>
$$\chi^2(4C) < 50$$

> Optimized by the value of figure of merit (FOM) $\frac{S}{\sqrt{S+B}}$

 \square $|M(p\pi^-/\bar{p}\pi^+) - m_{\Lambda}| < 0.006$ GeV, m_{Λ} is the mass of Λ from PDG

Results of Born cross section and effective EMFFs

- **D** With data collected at $\sqrt{s} = 2.396$ GeV, large statistic
- **D** By exclusive decay mode, i.e. $\Lambda \rightarrow p\pi^-, \Lambda \rightarrow \overline{p}\pi^+$
- The Born cross section $\sigma_{Born} = \frac{N_signal}{(L\epsilon(1+\delta)Br(\Lambda \rightarrow p\pi^{-})Br(\Lambda \rightarrow p\pi^{+}))}$
- \blacktriangleright ISR correction factor 1+ δ is from ConExc
- is the detection efficiency , L is the luminosity
- \succ σ_{Born} = 118.7 \pm 5.3(stat) \pm 5.1(syst) pb
- Effective form factor are related to σ_{Born} , $|G(q^2)| = \left| \frac{\sigma}{\sigma_{Born}} \right|$

$$= \sqrt{\frac{\sigma_{Born}(q^2)}{(1+\frac{1}{2\tau})(\frac{4\pi\alpha^2\beta}{3q^2})}}$$

 \rightarrow |G|=0.123±0.003(stat)±0.003(syst)

 $\alpha \approx \frac{1}{137}$ is the fine structure constant, $\beta = \sqrt{1 - \frac{1}{\tau}}$ is the velocity , $\tau = \frac{q^2}{4m_{\Lambda}^2}$

Complete measurement of Λ **EMFFs** @ \sqrt{s} =2.396 GeV

An event of the reaction $e_{+}e_{-} \rightarrow \Lambda(\rightarrow p\pi_{-})\Lambda(\rightarrow p\pi_{+})$ is specified by the five dimensional vector $\xi = (\theta, \Omega_1, \Omega_2)$, the differential cross section is:

0

cosθ

0.5

Non-zero phase means: not only the s-wave but also the d-wave amplitude contribute to the production interference between s-d waves results in a polarized final state. The first complete hyperon EMFF measurement, and a milestone in the study of hyperon structure.

-1

Phys. Rev.Lett 123, 122003 (2019)

-0.5

-0.5

0

cosθ

0.5

1.5

0.5

-1

dơ/dcosθ (a.u.)

Precision measurement of Cross Section Near Threshold with $e^+e^- \rightarrow \Lambda_c^+ \overline{\Lambda}_c^-$

Analysis strategy (I)

- Intermediate states are selected in advance.
- Minimum ΔE is required in each mode.
- No optimal requirement at event level.
- Λ_c^+ and $\bar{\Lambda}_c^-$ are reconstructed independently.
- Total cross section is obtained from weighted average.

$\mathcal{L}_{\mathit{int}}~(pb^{-1})$	Energy error
47.67	$0.72 { m MeV}$
8.545	_
8.162	_
566.9	$0.74 { m MeV}$
	\mathcal{L}_{int} (pb ⁻¹) 47.67 8.545 8.162 566.9

Data sets

Decay modes	Absolute BR(%)	Subsequent BR(%)	Total BR(%)	
1. $\Lambda_c^+ \rightarrow p^+ K^- \pi^+$	5.84 ± 0.35	-	5.84 ± 0.35	
2. $\Lambda_c^+ \rightarrow p^+ K_S^0, K_S^0 \rightarrow \pi^+ \pi^-$	1.52 ± 0.09	69.2	1.05 ± 0.06	
3. $\Lambda_c^+ \to \Lambda \pi^+$, $\Lambda \to p^+ \pi^-$	1.24 ± 0.08	63.9	0.79 ± 0.05	10 modes branching fraction
4. $\Lambda_c^+ \to p^+ K^- \pi^+ \pi^0$, $\pi^0 \to \gamma \gamma$	4.53 ± 0.38	98.8	4.48 ± 0.38	
5. $\Lambda_c^+ o p^+ K^0_S \pi^0$, $K^0_S o \pi^+ \pi^-$, $\pi^0 o \gamma \gamma$	1.87 ± 0.14	69.2 imes 98.8	1.28 ± 0.10	
6. $\Lambda_c^+ ightarrow \Lambda \pi^+ \pi^0$, $\Lambda ightarrow p^+ \pi^-$, $\pi^0 ightarrow \gamma \gamma$	7.01 ± 0.42	63.9 imes 98.8	4.43 ± 0.27	
7. $\Lambda_c^+ ightarrow p^+ K_S^0 \pi^+ \pi^-$, $K_S^0 ightarrow \pi^+ \pi^-$	1.53 ± 0.14	69.2	1.06 ± 0.10	
8. $\Lambda_c^+ ightarrow \Lambda \pi^+ \pi^+ \pi^-$, $\Lambda ightarrow p^+ \pi^-$	3.81 ± 0.30	63.9	$\textbf{2.43} \pm \textbf{0.19}$	
9. $\Lambda_c^+ o \Sigma^0 \pi^+$, $\Sigma^0 o \Lambda\gamma$, $\Lambda o p^+\pi^-$	1.27 ± 0.09	63.9	0.81 ± 0.06	
$10.\Lambda_c^+ ightarrow \Sigma^+ \pi^+ \pi^-$, $\Sigma^+ ightarrow p\pi^0$, $\pi^0 ightarrow \gamma\gamma$	4.25 ± 0.31	51.6 imes 98.8	2.17 ± 0.16	

Analysis Strategy (II)

Mode	ΔE window (GeV)
$pK^{-}\pi^{+}$	(-0.02,0.02)
pK_S^0	(-0.02,0.02)
$\Lambda \pi^+$	(-0.02,0.02)
$pK^{-}\pi^{+}\pi^{0}$	(-0.03,0.02)
$pK_S^0\pi^0$	(-0.03,0.02)
$\Lambda \pi^+ \pi^0$	(-0.03,0.02)
$pK_S^0\pi^+\pi^-$	(-0.02,0.02)
$\Lambda \pi^+ \pi^+ \pi^-$	(-0.02,0.02)
$\Sigma^0 \pi^+$	(-0.02,0.02)
$\Sigma^{+}\pi^{+}\pi^{-}$	(-0.03,0.02)

 $\Delta E = E - E_{
m beam}$ $M_{BC} = \sqrt{E_{
m beam}^2/c^4 - |\overrightarrow{p}|^2/c^2}$

Background Analysis

signal		Background modes								Total	
modes	$_{pK}-\pi^+$	pK _s 0	$\Lambda \pi^+$	$_{pK}-\pi^{+}\pi^{0}$	$_{pK_{s}^{0}}\pi^{0}$	$\Lambda \pi^+ \pi^0$	$_{PK_{s}^{0}\pi^{+}\pi^{-}}$	$\Lambda \pi^+ \pi^+ \pi^-$	$\Sigma^0 \pi^+$	$\Sigma^+\pi^+\pi^-$	Survived
$_{pK}-\pi^+$	261769	10	1	145	23	58	4	30	2	143	263074
pK ⁰ _s	21	49980	23	0	3	4	0	0	7	5	50138
$\Lambda \pi^+$	0	5	29995	1	0	2	0	0	83	0	30269
$_{pK}-\pi^{+}\pi^{0}$	1597	3	3	71151	53	114	68	133	2	148	78110
$_{pK_{s}^{0}\pi^{0}}$	210	22	17	132	21157	343	118	43	15	83	23806
$\Lambda \pi^+ \pi^0$	34	3	45	6	96	57844	0	260	838	154	63378
$_{PK_{s}^{0}\pi^{+}\pi^{-}}$	59	2	1	232	145	45	18472	402	4	45	21507
$\Lambda \pi^+ \pi^+ \pi^-$	3	0	2	14	2	179	33	23176	1	5	24694
$\Sigma^0 \pi^+$	0	0	119	0	0	37	0	0	16086	0	16615
$\Sigma^+\pi^+\pi^-$	531	38	3	165	99	322	42	161	19	33334	37015
Total Generated	509030	89999	71591	418112	116115	416653	90768	218187	69165	182799	-

	modes	Background modes									
modes		$pK^{-}\pi^{+}$	pK_S^0	$\Lambda \pi^+$	$pK^{-}\pi^{+}\pi^{0}$	$pK_S^0\pi^0$	$\Lambda \pi^+ \pi^0$	$pK_S^0\pi^+\pi^-$	$\Lambda \pi^+ \pi^+ \pi^-$	$\Sigma^0 \pi^+$	$\Sigma^+\pi^+\pi^-$
	1. $pK^{-}\pi^{+}$	99.5	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.1
	2. pK_S ⁰	0.0	99.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	3. Λπ ⁺	0.0	0.0	99.1	0.0	0.0	0.0	0.0	0.0	0.3	0.0
	4. $pK^{-}\pi^{+}\pi^{0}$	2.0	0.0	0.0	91.1	0.1	0.1	0.1	0.2	0.0	0.2
signal	5. $pK_{S}^{0}\pi^{0}$	0.9	0.1	0.1	0.6	88.9	1.4	0.5	0.2	0.1	0.3
modes	6. $\Lambda \pi^+ \pi^0$	0.1	0.0	0.1	0.0	0.2	91.3	0.0	0.4	1.3	0.2
	7. $pK_S^0\pi^+\pi^-$	0.3	0.0	0.0	1.1	0.7	0.2	85.9	1.9	0.0	0.2
	8. $\Lambda\pi^+\pi^+\pi^-$	0.0	0.0	0.0	0.1	0.0	0.7	0.1	93.9	0.0	0.0
	9. $\Sigma^0 \pi^+$	0.0	0.0	0.7	0.0	0.0	0.2	0.0	0.0	96.8	0.0
	$10.\Sigma^{+}\pi^{+}\pi^{-}$	1.4	0.1	0.0	0.4	0.3	0.9	0.1	0.4	0.1	90.1

All cross feed rates are less than 2% and typically are about 1%

Systematic uncertainty

- (Tracking) PID efficiencies are weighted with (transverse) momentum.
- K⁰_S and Λ reconstruction uncertainty with tracking and PID uncertainties of the decay daughter included.
- > systematic uncertainty of reconstructing π^0 .
- MC statistical uncertainty.
- MC signal modeling uncertainty.
- Uncertainty of subsequent BRs and absolute BRs.

Mode	Tracking	PID	K_S^0	۸	π^0	MC stat.	Signal model	Sub. BR.	Abs. BR.	Total
1. $pK^{-}\pi^{+}$	3.2	4.6	_	_	_	0.3	_	_	6.0	8.2
2. pK_S^0	1.3	0.5	1.2	_	_	0.6	0.2	0.1	5.6	5.9
3. $\Lambda \pi^+$	1.0	1.0	_	2.5	—	0.7	0.5	0.8	6.1	6.9
4. $pK^{-}\pi^{+}\pi^{0}$	3.0	7.6	_	_	1.0	0.8	2.0	_	8.3	11.9
5. $pK_{S}^{0}\pi^{0}$	1.0	1.8	1.2	_	1.0	1.0	1.0	0.1	7.5	8.0
6. $\Lambda \pi^{+} \pi^{0}$	1.0	1.0	_	2.5	1.0	0.6	0.6	0.8	5.9	6.8
7. $pK_{S}^{0}\pi^{+}\pi^{-}$	2.8	5.3	1.2	_	_	1.0	0.5	0.1	9.3	11.2
8. $\Lambda \pi^+ \pi^+ \pi^-$	3.0	3.0	_	2.5	_	0.8	0.8	0.8	7.9	9.4
9. $\Sigma^0 \pi^+$	1.0	1.0	_	2.5	_	1.0	1.7	0.8	6.7	7.6
$10.\Sigma^+\pi^+\pi^-$	3.0	4.0	-	-	1.0	0.7	0.8	0.6	7.4	9.0

Systematic uncertainty

f_{ISR} uncertainties.

- Uncertainty of calculation algorithm: KKMC and Kami.
- Uncertainty of input line-shape motivated by specific fit model.
- The uncertainty of CMS energy near threshold: 4574.50 ± 0.72 MeV.
- Uncertainty of beam energy spread: $\sigma_{beam} = 1.551 \pm 0.175$ MeV.

Uncertainties of f_{VP}.

Uncertainties of luminosity.

			$f_{\rm ISR}$				
\sqrt{s} (MeV)	Calculation model	Line shape	C.m. energy	Energy spread	Total	$f_{\rm VP}$	\mathcal{L}_{int}
4574.5	3.4	1.2	18.0	3.0	18.6	0.5	1.0
4580.0	0.7	0.6		0.2	0.9	0.5	0.7
4590.0	0.2	1.7			1.7	0.5	0.7
4599.5	0.1	2.6			2.6	0.5	1.0

Total Born Cross Section

The Born cross section of channel *i*:

$$x_i = \frac{N_i}{L \cdot \varepsilon_i \cdot f_{VP} \cdot f_{ISR} \cdot BR_i} \tag{1}$$

The total Born cross section:

$$\bar{x} = \sum_{i} w_i x_i, w_i = (1/\sigma_i^2) / \left(\sum_{i} 1/\sigma_i^2\right)$$
(2)

and corresponding uncertainty takes the form

$$\sigma_{\bar{x}}^2 = \sum_{i,j} w_i(\mathbf{M}_x)_{ij} w_j \tag{3}$$

or approximately

$$\sigma_{\bar{x},stat.}^2 = \sum_{i,j} w_i (\mathbf{M}_x^{stat.})_{ij} w_j \quad \text{and} \quad \sigma_{\bar{x},syst.}^2 = \sum_{i,j} w_i (\mathbf{M}_x^{syst.})_{ij} w_j \tag{4}$$

The total Born cross sections:

$\sqrt{s}(\text{GeV})$	$\mathcal{L}_{int} \; (pb^{-1})$	f _{ISR}	$\sigma^{Born}_{\Lambda^+_c}$ (pb)	$\sigma^{Born}_{\bar{\Lambda}c}$ (pb)	$\overline{\sigma^{Born}}$ (pb)
4.5745	47.67	0.45	$243\pm16\pm48$	$230\pm16\pm45$	$236\pm11\pm46$
4.580	8.545	0.66	$180\pm23\pm12$	$241\pm26\pm16$	$207\pm17\pm13$
4.590	8.126	0.71	$262\pm28\pm18$	$231\pm26\pm15$	$245\pm19\pm16$
4.5995	566.9	0.74	$238\pm4\pm15$	$236\pm4\pm15$	$237\pm3\pm15$

 Efficiencies are obtained by fitting the MBC of signal MC
 A similar fit as that performed on data 2019-12-18

Angular distribution study

- Studied at $\sqrt{s} = 4.5745$ and 4.5995 GeV only.
- Divided to 10 $cos\theta$ bins.
- In each bin, combined signals from all tagged modes.
- Corrected the yields with the detection efficiency bin-by-bin.
- Combined the corrected yields from Λ_c^+ and $\bar{\Lambda}_c^-$ bins.

Angular distribution study

The $|G_E/G_M|$ ratios are connected with the α_{Λ_c} by following formula:

$$|G_E/G_M|^2 = (1 - \alpha_{\Lambda_c})/(\frac{4m_{\Lambda_c^+}^2}{s}\alpha_{\Lambda_c} + \frac{4m_{\Lambda_c^+}^2}{s})$$

\sqrt{s} (GeV)	α_{Λ_c}	$ G_E/G_M $
4.5745	$-0.13 \pm 0.12 \pm 0.08$	$1.14 \pm 0.14 \pm 0.07$
4.5995	$-0.20 \pm 0.04 \pm 0.02$	$1.23 \pm 0.05 \pm 0.03$

Born cross section of e+e- $\rightarrow \Lambda_c^+ \overline{\Lambda}_c^-$ are measured with high precision

Phys. Rev. Lett 120,132001(2018)

Summary & outlook BESI

- BESIII is an excellent laboratory for the measurement of Farm factor since both ISR and scan method can be performed with a big data sets
- The Born cross sections of e+e-→pp have been measured, consistent with BarBar results ,and the corresponding effective FF |G| under the assumption |G_E|=|G_M| ,The precision has much improvement.
- Measurement of Neutron Electromagnetic Form factors has preliminary results , G_E and G_M have determined for the first time
- **Complete Measurement of the Λ Electromagnetic Form Factors has been done.**
- Precision Measurement of the e⁺e⁻ $\rightarrow \Lambda_c^+ \overline{\Lambda_c^-}$ Cross Section Near Threshold has been finished.
- With more data sets in the future , more precise results are expected at **BESIII**

Thanks for your attention!

Energy scan method vs ISR method

Electromagnetic Form Factors in Time-Like Region

Direct Scan Method:

- Beam energy is discrete.
- Luminosity is relatively small.

$$\begin{pmatrix} \frac{d\sigma_{N\bar{N}}}{d\Omega} \end{pmatrix} = \frac{\alpha^2 C\beta}{4q^2} \left[|G_M^N|^2 (1 + \cos^2\theta) + \frac{1}{\tau} |G_E^N|^2 (1 - \cos^2\theta) \right]$$

• q² is single at each beam energy.

Initial State Radiation Method: $\begin{array}{c} & & & \\ &$

• Luminosity is relatively high.

$$\left(\frac{d^2\sigma_{N\bar{N}\gamma}}{dq^2d\theta}\right) = \frac{1}{q^2}W(q^2, x, \theta_\gamma)\sigma_{N\bar{N}}(q^2)$$
$$W(q^2, x, \theta_\gamma) = \frac{\alpha}{\pi x}\left(\frac{2-2x+x^2}{\sin^2\theta_\gamma} - \frac{x^2}{2}\right)$$

• q² is continuous from threshold to s.

Time-like vs. space-like EMFFs

0.5

 $\cos\theta_{\Lambda}$

-0.5

0

-1