High-pressure synchrotron X-ray diffraction studies of potassium and complex carbonates

A.Yu. Likhacheva^{1,2}, <u>S.V. Rashchenko^{1,3}</u>, P.N. Gavryushkin^{1,3}, S.N. Dementiev¹, S.V. Goryainov¹, P.S.R. Prasad⁴, A.I. Ancharov^{2,5}

¹Sobolev Institute of Geology and Mineralogy SB RAS, Novosibirsk ²Budker Institute of Nuclear Physics SB RAS, Novosibirsk ³Novosibirsk State University, Novosibirsk ⁴National Geophysical Research Institute, Hyderabad (India) ⁵Institute of Solid State Chemistry SB RAS, Novosibirsk

Diamond-anvil cell technique for high static pressure generation

750 GPa / 6000 K

Matter under extreme conditions: PHYSICS

LETTER

doi:10.1038/nature14964

Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system

A. P. Drozdov¹*, M. I. Eremets¹*, I. A. Troyan¹, V. Ksenofontov² & S. I. Shylin²

Nature, 2016

Matter under extreme conditions: CHEMISTRY

Unexpected Stable Stoichiometries of Sodium Chlorides

Weiwei Zhang,^{1,2}*† Artem R. Oganov,^{2,3,4}*† Alexander F. Goncharov,^{5,6} Qiang Zhu,² Salah Eddine Boulfelfel,² Andriy O. Lyakhov,² Elissaios Stavrou,⁵ Maddury Somayazulu,⁵ Vitali B. Prakapenka,⁷ Zuzana Konôpková⁸

Science, 2013

NaCl₃ (60 GPa)

Matter under extreme conditions: EARTH SCIENCES

Motohiko Murakami,¹* Kei Hirose,¹* Katsuyuki Kawamura,¹ Nagayoshi Sata,² Yasuo Ohishi³

Matter under extreme conditions: PLANETARY SCIENCES

LETTER

doi:10.1038/nature16164

Evidence for a new phase of dense hydrogen above 325 gigapascals

Nature, 2016

Philip Dalladay-Simpson¹, Ross T. Howie¹† & Eugene Gregoryanz^{1,2}

BL04 "Diffractometry in hard X-rays":

a high-pressure X-ray diffraction beamline at the VEPP-3 storage ring of the Siberian Synchrotron Radiation Centre (Budker Institute of Nuclear Physics, Novosibirsk)

- Si (111) monochromator: 33.7 keV / 0.3685 Å (diamond transparency!)
- MAR345 image plate detector (34.5 cm in diameter)
- Unit cell and Rietveld structure refinement of materials under extreme conditions

High-pressure studies of geomaterials: alkali and complex carbonates

Deep carbon cycle

I. High-pressure phases of potassium carbonate K₂CO₃: *ab initio* quantum modeling

Search of structures by USPEX evolutionary algorithm

I. High-pressure phases of potassium carbonate K_2CO_3 : *ab initio* quantum modeling

Energy minimization

I. High-pressure phases of potassium carbonate K₂CO₃: *in situ* synchrotron X-ray diffraction

High-pressure phases of potassium carbonate K₂CO₃:

.

in situ synchrotron X-ray diffraction

Rietveld refinement: theoretical *P*-1 structure (blue), γ-K₂CO₃ (black), and K₂CO₃ ·1.5H₂O (red)

Unique crystal chemistry:

- combination of carbonate, sulfate, and [Si(OH)₆]^{2–} anions
- extensive H-bonding net

M. ARDIT ET AL.

From Greek 'thaumazein' (to be surprised)

P6₃ a = 11.056 Å, c = 10.414 Å, V = 1102.5 Å³ $[Si(OH)_6]^{2-}$ octahedral anions – an extreme pressure feature:

- 'Phase D' MgSi₂(OH)₂O₄ (P > 30 GPa)
- Hydroxide perovskite MgSi(OH)₆ (P > 10 GPa)

Thaumasite sulfate attack (TSA)

Diffraction patterns of thaumasite compressed in methanol : ethanol : H_2O (quasi)hydrostatic pressure medium (16:3:1 vol.)

Diffraction patterns of thaumasite compressed in methanol : ethanol : H_2O (quasi)hydrostatic pressure medium (16:3:1 vol.)

Effect of helium on structure and compression behavior of SiO₂ glass

Guoyin Shen^{a,1}, Qiang Mei^a, Vitali B. Prakapenka^b, Peter Lazor^c, Stanislav Sinogeikin^a, Yue Meng^a, and Changyong Park^a

^aHigh Pressure Collaborative Access Team, Geophysical Laboratory, Carnegie Institution of Washington, Argonne, IL 60439; ^bCenter for Advanced Radiation Sources, University of Chicago, Chicago, IL 60637; and ^cDepartment of Earth Sciences, Uppsala University, 75236 Uppsala, Sweden

Edited by Alexandra Navrotsky, University of California, Davis, CA, and approved March 2, 2011 (received for review February 14, 2011)

The behavior of volatiles is crucial for understanding the evolution of the Earth's interior, hydrosphere, and atmosphere. Noble gases as neutral species can serve as probes and be used for examining gas solubility in silicate melts and structural responses to any gas inclusion. Here, we report experimental results that reveal a strong

PNAS

Conclusions

- A high pressure *P*-1 structure predicted for K₂CO₃ from ab initio calculations was experimentally confirmed (but at lower *P*)
- No phase transitions were observed in *thaumasite* under RT compression up to amorphization above 5 GPa
- Helium is not an inert, but a penetrating medium for thaumasite-like compounds
- Pressure-induced penetration of He into thaumasite structure stabilizes it against amorphization

Raman spectra of thaumasite at high pressure

Structural transformation in natural cordierite at 4.5 GPa, associated with pressure-induced excess hydration

Pressure dependences of the volume and lattice parameters of cordierite (Cccm)

 $(Mg,Fe)_2[Al_4Si_5O_{18}]^*0.45H_2O \rightarrow 0.72H_2O$