

Theory of electromagnetic wave generation via a beam-plasma antenna

Volchok E. P., Timofeev I. V., Annenkov V. V.

 $(n=n_0 + \delta n \cos qz)$ it can radiate EM waves with frecuency ω and wave vector

$$\begin{split} &\mathcal{K}_{\parallel} = k_{\parallel}(1-\mathcal{Q}), \quad \mathcal{Q} = q/k_{\parallel}, \\ &\mathcal{K}_{\perp} = \sqrt{1-\mathcal{K}_{\parallel}^2}. \end{split}$$

• Generation is possible when

 $1 - \hat{v}_{h} < \Omega < 1 + \hat{v}_{h}$

• The direction of the radiation

$$\theta = \arctan\left(\sqrt{\frac{\nu_b^2}{(1-\Omega)^2}-1}\right)$$

$$\frac{1}{\partial x^2} + a_1 E_z - a_2 \frac{g}{\partial x} = -\frac{g}{\omega} \left(1 - \mathcal{K}_{\parallel}^2 / \varepsilon \right),$$
$$\frac{\partial^2 E_y}{\partial x^2} + a_3 E_y + a_4 \frac{\partial E_z}{\partial x} = 0,$$

$$\begin{split} \mathbf{a}_{1} &= \eta \left(1 - \mathcal{K}_{\parallel}^{2} / \varepsilon \right), \quad \mathbf{a}_{2} = \mathcal{K}_{\parallel} \mathbf{g} / \varepsilon, \\ \mathbf{a}_{3} &= \varepsilon - \mathcal{K}_{\parallel}^{2} - \frac{\mathbf{g}^{2}}{\varepsilon - \mathcal{K}_{\parallel}^{2}}, \quad \mathbf{a}_{4} = \frac{\mathcal{K}_{\parallel} \mathbf{g}}{\varepsilon - \mathcal{K}_{\parallel}^{2}}, \end{split}$$

the current amplitude $\mathcal{J} = j_0/(en_0c) = i\delta nE_0(z)/(4\omega)$ and $\varepsilon = 1 - \frac{1}{\omega^2 - \Omega_2^2}, \quad g = \frac{\Omega_e/\omega}{\omega^2 - \Omega_2^2}, \quad \eta = 1 - \frac{1}{\omega^2}.$

Inside the plasma the solution of the system:

where

$$\varkappa_{1,2}^2 = \frac{a_1 + a_3 + a_2a_4 \mp \sqrt{(a_1 + a_3 + a_2a_4)^2 - 4a_1a_3}}{2},$$

where

$$\mathcal{F}_{1}(l) = \frac{\mathcal{K}_{\perp}\omega(F_{1} + F_{2})}{l(1 - \omega^{2})^{3/2}}$$

 F_1 and F_2 are contributions from different plasma eigenmodes:

 $Z = b_1 \cos(\varkappa_1 l) + i\mathcal{K}_{\perp} b_5 \sin(\varkappa_1 l) + G \left(b_2 \cos(\varkappa_2 l) + i\mathcal{K}_{\perp} b_6 \sin(\varkappa_2 l) \right),$ $G = -\frac{b_3}{b_4} \left(\frac{\varkappa_1 \cos(\varkappa_1 l) - i\mathcal{K}_{\perp} \sin(\varkappa_1 l)}{\varkappa_2 \cos(\varkappa_2 l) - i\mathcal{K}_{\perp} \sin(\varkappa_2 l)} \right),$ $\mathbf{b}_5 = -\varkappa_1 \mathbf{b}_1 - \mathbf{i} \mathcal{K}_{\parallel} \mathbf{b}_3 (\varepsilon - \mathcal{K}_{\parallel}^2 - \varkappa_1^2) / \mathbf{g},$ $\mathbf{b}_6 = -\varkappa_2 \mathbf{b}_2 - \mathbf{i} \mathcal{K}_{\parallel} \mathbf{b}_4 (\varepsilon - \mathcal{K}_{\parallel}^2 - \varkappa_2^2) / \mathbf{g}.$

• The region of trancparency for both modes is bounded by

$$\varkappa_1^2=0,\qquad \varkappa_1^2=\varkappa_2^2.$$

$$\begin{split} \mathfrak{Q}_{1}^{\pm} &= 1 \pm \widehat{\nu}_{b} \sqrt{\varepsilon + g}, \\ \mathfrak{Q}_{2}^{\pm} &= 1 \pm \widehat{\nu}_{b} \sqrt{\varepsilon + g \xi}, \end{split}$$

Fig. 2 : Radiation efficiency as a function of the modulation period and radius of plasma column for the cylindrical antenna.

Would You Like to Know More?

About the Author

Volchok Evgeniya, a student of Novosibirsk State University, Departemnt of Physics. e-mail: Evgeniya-Volchok@yandex.ru

Fig. 5: (a)Radiation efficiency as a function of the modulation period and plasma thickness for the plane antenna (for the parameters $n_b = 0.01n_0$, $v_b = 0.9c$, $\Omega_e = 0.9\omega_p$, $\delta n = 0.1 n_0$; (b) Transverse structure of electric fields for plasma eigenmodes at the point of the global maximum of \mathcal{P} .

Fig. 5(a) shows the relative power of EM radiation for the constant electric field amplitude ($\int \sim E_0^2 L_z$), where the radiating plasma region is characterized by the length $L_z = v_b/\Gamma$ required for beam trapping. The conditions for local maxima on Fig.5(a) are $\varkappa_1 l = \pi n/2$ (black)

and $\varkappa_2 l = \pi m/2 (red)$ for odd n and m. This is due to the fact that work of the uniform current under the field of plasma wave becomes maximal when we integrate over the half-wavelength plasma and the minimum when the plasma width is raised to the wavelength.

Summary

- The theory of EM emission generated in a thin magnetized plasma with the longitudinal density modulation under the injection of an electron beam has been formulated in terms of plasma antenna.
- It has been predicted that, at certain emission angles, plasma becomes transparent to radiation and the whole plasma volume may be involved in generation of EM waves.
- The relative power remains enough high even for relatively thick plasma (~ 10 - 15%).
- The proposed method can be generalized to the turbulent regime in which random fluctuations of plasma density are represented by a set of periodic perturbations of the type

 $\delta n \sim \sum n_q e^{iq r}$

11th International Conference on Open Magnetic Systems for Plasma Confinement, Novosibirsk, 8-12 August 2016