University

Theory of electromagnetic wave generation via a beam-plasma antenna

Introduction

It is experimentally found that during the propagation of an electron beam throught a thin plasma column immersed in external magnetic field the powerful electromagnetic radiation is observed. What is the mechanism? How does the efficiency of radiation depend on plasma parameters?

Formulation of the Problem

- An electron beam (density n_{b}, speed v_{b} and the relativistic factor γ_{b}) excites an unstable longitudinal wave.
- The frequency and growth rate of this wave are

$$
\frac{\omega_{\mathrm{b}}}{\omega_{\mathfrak{p}}}=1-\frac{\left(n_{\mathrm{b}} / n_{0}\right)^{1 / 3}}{2^{4 / 3} \gamma_{\mathrm{b}}}, \quad \frac{\Gamma}{\omega_{\mathfrak{p}}}=\frac{\sqrt{3}\left(n_{\mathrm{b}} / n_{0}\right)^{1 / 3}}{2^{4 / 3} \gamma_{\mathrm{b}}} .
$$

- The electric field of the wave: $\mathrm{E}_{\chi}(\mathrm{t}, \mathrm{x})=\mathrm{E}_{0} \cos \left(\mathrm{k}_{\|} z-\omega t\right)$, where $\mathrm{E}_{0}=\gamma_{b}^{3} \Gamma^{2} v_{b}$; Its wave vector: $\mathrm{k}_{\|}=\frac{\omega}{v_{b}}$
- If such a wave scatters on harmonic density perturbation $\left(n=n_{0}+\delta n \cos q z\right)$ it can radiate EM waves with frecuency ω and wave vector

$$
\begin{aligned}
& \mathcal{K}_{\|}=k_{\|}(1-Q), \quad Q=q / k_{\|}, \\
& \mathcal{K}_{\perp}=\sqrt{1-\mathcal{K}_{\|}^{2}} .
\end{aligned}
$$

- Generation is possible when

$$
1-\widehat{v}_{\mathrm{b}}<Q<1+\widehat{v}_{\mathrm{b}}
$$

- The direction of the radiation

$$
\theta=\arctan \left(\sqrt{\frac{v_{\mathrm{b}}^{2}}{(1-Q)^{2}}-1}\right)
$$

- When the modulation period coincides with the wavelength of the beam-driven mode ($Q=1$) the radiation angle $\theta=90^{\circ}$.
- Dispersion relations of eigenmodes:
$\varkappa_{1}^{2}=\eta$ and $\varkappa_{2}^{2}=\left(\varepsilon^{2}-g^{2}\right) / \varepsilon$.
- $\mathrm{F}_{2}=0$, this mode has X-polarization, can propagate inside the plasma but cannot interact with the longitudinal current.
- The first mode has O-polarization and penetrates into the plasma only to the skin-depth ($\varkappa_{1}=\mathfrak{i} \varkappa_{)}$.
- The radiation power depends on l as

$$
\mathcal{F}_{1}(l)=\frac{\sinh ^{2}(\varkappa l)}{\varkappa l\left[\omega^{2}+\sinh ^{2}(\varkappa l)\right]},
$$

- Efficiency of such radiation can be raised to the level of 5-10\%.

Cylindrical Antenna

\mathcal{Q}
Fig. 2: Radiation efficiency as a function of the modulation period and radius of plasma column for the cylindrical antenna.

Would You Like to Know More?

This poster and our articles on this theme can be downloaded here: https://yadi.sk/d/SWBxRscho8Fr3

About the Author

Volchok Evgeniya,
a student of Novosibirsk State University, Departemnt of Physics. e-mail: Evgeniya-Volchok@yandex.ru

Inside the plasma, electromagnetic fields $\mathbf{E}=\mathbf{E}(x) \exp \left(\mathfrak{i} \mathcal{K}_{\|} z-\mathfrak{i} \omega t\right)+$ c.c. obey

$$
\begin{aligned}
& \frac{\partial^{2} \mathrm{E}_{z}}{\partial x^{2}}+\mathrm{a}_{1} \mathrm{E}_{z}-\mathrm{a}_{2} \frac{\partial \mathrm{E}_{y}}{\partial x}=-\frac{\mathfrak{i} \mathcal{J}}{\omega}\left(1-\mathcal{K}_{\|}^{2} / \varepsilon\right), \\
& \frac{\partial^{2} \mathrm{E}_{y}}{\partial x^{2}}+\mathrm{a}_{3} \mathrm{E}_{y}+\mathrm{a}_{4} \frac{\partial \mathrm{E}_{z}}{\partial x}=0
\end{aligned}
$$

where

$$
\begin{aligned}
& a_{1}=\eta\left(1-\mathcal{K}_{\|}^{2} / \varepsilon\right), \quad a_{2}=\mathcal{K}_{\|} g / \varepsilon \\
& a_{3}=\varepsilon-\mathcal{K}_{\|}^{2}-\frac{g^{2}}{\varepsilon-\mathcal{K}_{\|}^{2}}, \quad a_{4}=\frac{\mathcal{K}_{\|} g}{\varepsilon-\mathcal{K}_{\|}^{2}},
\end{aligned}
$$

the current amplitude $\mathcal{J}=\mathfrak{j}_{0} /\left(e n_{0} \mathfrak{c}\right)=\mathfrak{i} \delta \mathfrak{n E} E_{0}(z) /(4 \omega)$ and

$$
\varepsilon=1-\frac{1}{\omega^{2}-\Omega_{e}^{2}}, \quad g=\frac{\Omega_{e} / \omega}{\omega^{2}-\Omega_{e}^{2}}, \quad \eta=1-\frac{1}{\omega^{2}}
$$

Inside the plasma the solution of the system:
$E_{z}=b_{1}\left(C_{1} e^{i \varkappa_{1} x}+C_{2} e^{-i \varkappa_{1} x}\right)+b_{2}\left(C_{3} e^{i \varkappa_{2} x}-C_{4} e^{-i \varkappa_{2} x}\right)-\frac{i \mathcal{J}}{\eta \omega}$, $E_{y}=b_{3}\left(C_{1} e^{i \varkappa_{1} x}-C_{2} e^{-i \varkappa_{1} x}\right)+b_{4}\left(C_{3} e^{i \varkappa_{2} x}+C_{4} e^{-i \varkappa_{2} x}\right)$,
where

$$
x_{1,2}^{2}=\frac{a_{1}+a_{3}+a_{2} a_{4} \mp \sqrt{\left(a_{1}+a_{3}+a_{2} a_{4}\right)^{2}-4 a_{1} a_{3}}}{2},
$$

$$
\begin{aligned}
& b_{1}=a_{3}-\varkappa_{1}^{2}, \quad b_{2}=i \varkappa_{2} a_{2} \\
& b_{3}=-i \varkappa_{1} a_{4}, \quad b_{4}=a_{1}-\varkappa_{2}^{2}
\end{aligned}
$$

In vacuum, EM waves

$$
\begin{array}{ll}
E_{z}=C_{5} e^{i \mathcal{K}_{\perp}(x-l)}, & E_{z}=C_{7} e^{-i \mathcal{K}_{\perp}(x+l)} \\
E_{y}=C_{6} e^{i \mathcal{K}_{\perp}(x-l)}, & E_{y}=C_{8} e^{-i \mathcal{K}_{\perp}(x+l)} .
\end{array}
$$

The energy flux density

$$
\mathcal{S}=\frac{S_{x}}{n_{0} m_{e} c^{3}}=2\left[\frac{\left|C_{5}\right|^{2}}{\mathcal{K}_{\perp}}+\mathcal{K}_{\perp}\left|C_{6}\right|^{2}\right]
$$

The full radiation power $P_{\text {rad }}$ in units of beam power P_{b}

$$
\mathcal{P}=\frac{P_{\mathrm{rad}}}{P_{\mathrm{b}}}=\frac{\omega}{\left(\gamma_{\mathrm{b}}-1\right) n_{\mathrm{b}} v_{\mathrm{b}}} \int_{0}^{\mathrm{L}_{z}} \delta d z,
$$

where L_{z} is the length of plasma. After substituting constants and the current

$$
\mathcal{P}=\frac{\delta n^{2} \mathcal{F}_{1}(l)}{8\left(\gamma_{\mathrm{b}}-1\right) n_{\mathrm{b}} v_{\mathrm{b}} \sqrt{1-\omega^{2}}} \int_{0}^{\mathrm{L}_{z}} \mathrm{E}_{0}^{2} \mathrm{~d} z
$$

where

$$
\mathcal{F}_{1}(l)=\frac{\mathcal{K}_{\perp} \omega\left(F_{1}+F_{2}\right)}{l\left(1-\omega^{2}\right)^{3 / 2}} .
$$

F_{1} and F_{2} are contributions from different plasma eigenmodes:

$$
\begin{aligned}
& F_{1}=\left|\frac{b_{5} \sin \left(\varkappa_{1} l\right)+G b_{6} \sin \left(\varkappa_{2} l\right)}{Z}\right|^{2}, \\
& F_{2}=\left|\frac{b_{3} \sin \left(\varkappa_{1} l\right)+G b_{4} \sin \left(\varkappa_{2} l\right)}{Z}\right|^{2},
\end{aligned}
$$

where
$Z=b_{1} \cos \left(\varkappa_{1} l\right)+i \mathcal{K}_{\perp} b_{5} \sin \left(\varkappa_{1} l\right)+G\left(b_{2} \cos \left(\varkappa_{2} l\right)+i \mathcal{K}_{\perp} b_{6} \sin \left(\varkappa_{2} l\right)\right)$,
$\mathrm{G}=-\frac{\mathrm{b}_{3}}{\mathrm{~b}_{4}}\left(\frac{\varkappa_{1} \cos \left(\varkappa_{1} \mathrm{l}\right)-i \mathcal{K}_{\perp} \sin \left(\varkappa_{1} \mathrm{l}\right)}{\varkappa_{2} \cos \left(\varkappa_{2} \mathrm{l}\right)-i \mathcal{K}_{\perp} \sin \left(\varkappa_{2} l\right)}\right)$
$b_{5}=-\varkappa_{1} b_{1}-\mathfrak{i} \mathcal{K}_{\|} b_{3}\left(\varepsilon-\mathcal{K}_{\|}^{2}-\varkappa_{1}^{2}\right) / g$,
$b_{6}=-\varkappa_{2} b_{2}-i \mathcal{K}_{\|} b_{4}\left(\varepsilon-\mathcal{K}_{\|}^{2}-\varkappa_{2}^{2}\right) / g$.

 Fig. 4: Window of plasma transpare
$\delta n=0.1 n_{0}, n_{b}=0.01 n_{0}, \Omega=0.9 \omega_{p}$).

- The region of trancparency for both modes is bounded by
- Solutions for Q :

$$
x_{1}^{2}=0, \quad x_{1}^{2}=x_{2}^{2} .
$$

$Q_{1}^{ \pm}=1 \pm \widehat{v}_{b} \sqrt{\varepsilon+g}$,
$Q^{ \pm}=1 \pm \widehat{v}_{b} \sqrt{\varepsilon+g \xi}$,
where

$$
\frac{g(\eta+\varepsilon)+2 \sqrt{\varepsilon \eta\left(g^{2}-(\eta-\varepsilon)^{2}\right)}}{(\eta-\varepsilon)^{2}}
$$

- Both plasma modes penetrate into the plasma in regions
$Q_{1}^{+}<Q<Q_{2}^{+}$and $Q_{2}^{-}<Q<Q_{1}^{-}$
- These modes have X-polarization with different angles to the magnetic field.

Fig. 5 : (a)Radiation efficiency as a function of the modulation period and plasma thickness for the plane antenna (for the parameters $n_{b}=0.01 n_{0}, v_{b}=0.9 \mathrm{c}, \Omega_{e}=0.9 \omega_{\mathrm{p}}$, $\delta n=0.1 n_{0}$); (b) Transverse structure of electric fields for plasma eigenmodes at the point of the global maximum of \mathcal{P}.

Fig. 5(a) shows the relative power of EM radiation for the constant electric field amplitude $\left(\int \sim E_{0}^{2} L_{z}\right)$, where the radiating plasma region is characterized by the length $\mathrm{L}_{z}=v_{\mathrm{b}} / \Gamma$ required for beam trapping. The conditions for local maxima on Fig.5(a) are $\varkappa_{1} l=\pi n / 2$ (black)

and $\varkappa_{2} l=\pi m / 2$ (red) for odd n and m. This is due to the fact that work of the uniform current under the field of plasma wave becomes maximal when we integrate over the half-wavelength plasma and the minimum when the plasma width is raised to the wavelength.

Summary

- The theory of EM emission generated in a thin magnetized plasma with the longitudinal density modulation under the injection of an electron beam has been formulated in terms of plasma antenna.
- It has been predicted that, at certain emission angles, plasma becomes transparent to radiation and the whole plasma volume may be involved in generation of EM waves.
plasma ($\sim 10-15 \%$)
The relative power remains enough high even for relatively thick plasma (~10-15\%).
- The proposed method can be generalized to the turbulent regime in which random fluctuations of plasma density are represented by a set of periodic perturbations of the type
$\delta n \sim \sum n_{q} e^{i q r}$

