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Stable confinement of hot-ion plasmas with the relative pressure β exceeding 0.5 was demonstrated. In these 
experiments the density of fast deuterons with the mean energy of 10 keV reached 5x1019 m-3. The result was 
obtained by using a new efficient method of transverse plasma confinement, so called “vortex confinement” [5]. 
Shear flows, driven via biased end plates and limiters, in combination with finite-Larmor-radius effects are shown to 
be efficient in confining high-beta plasmas even with a magnetic hill on axis. The maximal electron temperature was 
increased up to 1 keV that corresponds to electron temperature in first tokamaks. The result was achieved due to the 
additional electron cyclotron resonance heating (ECRH) by two 54.5 GHz gyrotrons with 0.4 MW power each [6]. It 
should be noted that the experimentally obtained electron temperature in GDT substantially exceeds previously 
predicted [2] limit for Te in a magnetic mirror trap with neutral beam injection: Te ~ 0.01 Einj, were Einj is the energy 
of injected neutral atoms. Thus it is possible to abandon this prediction and use in the mirror-based neutron source 
modeling a self-consistent value of the electron temperature. 

The GDT experimental achievements shift the projects of a GDT-based neutron source (GDT-NS) on a higher 
level of competitive ability and make possible today to construct a source with reasonable parameters, suitable for 
materials testing.  

Another mirror–trap concept proposed by the Budker Institute as a neutron source is a gas-dynamic multiple-
mirror Trap (GDMT) [7] combines the features of existing GOL-3 [8] and GDT devices, namely the GDT-like 
central cell with sloshing ions produced by intense neutral beam injection, and the multiple-mirror end sections to 
suppress axial plasma losses. Such a combination became feasible due to recent findings in both GOL-3 and GDT 
experiments [9]. 

The next sections of this paper present a status of numerical simulations of linear plasma neutron sources based 
on the achieved experimental data. 

INSTRUMENTS AND TOOLS FOR SIMULATIONS 

During the past few years the Linear Neutron Source Code Package (LNSCP) has been created and applied for 
numerical studies of GDT-NS and other mirror-based neutron source projects in parallel to the experimental 
research. This package is a development of the Integrated Transport Code System (ITCS) [10] and includes different 
numerical codes for plasma, gas and particle transport, neutron production, magnetic field etc. The main of them are 
the one-dimensional plasma code DOL [11] and updated 3D Monte-Carlo fast ion transport code MCFIT+ [12] 

The DOL code has been developed to perform fast calculations of plasma parameters in possible GDT upgrades 
and modifications including fusion neutron source as well as NS optimization research [13]. The code is intended to 
calculate the dynamics of plasma processes in mirror traps with two-component plasma. In this code, the distribution 
function of fast ions is calculated by solving the bounce-averaged kinetic equation with allowance for variations in 
the fast-particle distribution function along the trap axis for the case of the time scale order τci « τ|| « τd ~ τs ~ τex. 
Here, τci is the time of cyclotron gyration; τ|| is the bounce-oscillation period; and τd, τs, and τex are the characteristic 
times of deceleration, scattering, and charge exchange of fast particles, respectively. Longitudinal losses of warm 
plasma are modelled using a superposition of confinement mechanisms in the limiting cases. In particular, the 
possibility of plasma confinement in the gas-dynamic or weakly collisional case is taken into account and the effect 
of the ambipolar potential created by the population of fast particles is also allowed. In addition, the DOL code 
allows one to simulate the interaction of plasma with the neutral gas created as a result of hot atom injection. 

The detailed description of the DOL code and nonstationary model of an axisymmetric mirror trap with non-
equilibrium plasma (which is its bases) is presented in [11].  

The three-dimensional Monte Carlo fast ion transport code MCFIT+ is a new updated version of the MCFIT 
code which was developed since the late of 90’s in collaboration with German partners from the Helmholtz-Zentrum 
Dresden-Rossendorf (HZDR) [14] for simulation of fast ion transport in GDT experiments. 

The code based on the theory of binary Coulomb collisions and the equations of classical 
magnetohydrodynamics. In the main scheme of the MCFIT code, which is standard for the Monte Carlo method, 
statistically independent histories of fast particles are generated and their contributions are summed up into well-
defined estimation values for each parameter of interest. After simulating N particle histories, the final result for 
each parameter is calculated as an average with the statistical error determined by R.M.S. deviations. It is evident 
that the method converges as N−1/2. Thus the Monte Carlo code MCFIT simulates the linear transport of neutral 
beam produced energetic ions in given magnetic field, target plasma and neutral gas.  
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TABLE 1. Main results of GDT and GDT-base neutron source simulations:  
 (a) (b) (c) (d) 
Parameters GDT exp. GDT-U (next) GDT-NS GDMT-NS 

Magnetic field, B0/Bm (T) 0.34/12 0.5/15 1/15 1/9 
Effective mirror ratio, k 35 30 15 75 
Mirror-to-mirror distance, L (m) 7 7 10 10
NB injected/heat power, (MW) 5/3 9.6/7.2 40/30 40/30 
NBI energy, Einj (keV) 25 20 65 65 
Pulse duration, (s) 0.005 0.03 continuous continuous 
Warm ion density, nw (1020 m−3) 0.3 0.5 0.2 0.3 
Fast ion density, nf (1020 m−3) 0.5 0.7 2.5 3.5 
Mean ion energy, Ti (keV) 10 10 35 30 
Electron temperature, Те (keV) 0.25/0.9 * 0.4/1* 0.7 1.5 
Relative plasma pressure, β 0.6 0.5 0.5 0.5 
Plasma radius, a (cm) 14 10 8 8 
DT fusion neutron power, Pn (MW) – – 1.5 3 
DT fusion energy gain factor, Qfus – – 0.05 0.1 

* with an addition ECRH 
 
The numbers of DT fusion neutron source projects were simulated on the base of the achieved GDT 

experimental results. First of them is a model of GDT-NS proposed for fusion material research [2]. It is an axially 
symmetric mirror machine of the GDT type, 10 m long and with magnetic field B0 = 1 T and mirror ratio of 15. The 
source parameters are presented in the column (c) of Table 1. The GDMT based neutron source has improved axial 
confinement with the effective mirror ratio k up to 75 and high Te. The simulated GDMT-NS parameters are 
presented in column (d). They allow to propose the GDMT-NS as a basic for different applications including fusion 
material test facilities and moderate fusion driven (hybrid) systems (FDS). Optimization of GDT- and GDMT-based 
neutron sources for hybrid system will be presented by D. Yurov in [17] 
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