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Abstract. The paper presents a recent progress in experimental studies and status of numerical simulations of the mirror 
based fusion neutron source developed by the Budker Institute of Nuclear Physics (Novosibirsk, Russia) and its possible 
applications including a fusion material test facility and a fusion-fission hybrid system. Current research activity is 
supported by the Russian Science Foundation (project N 14-50-00080). 

INTRODUCTION 

The Budker Institute of Nuclear Physics (BINP) in worldwide collaboration develops a project of a 14 MeV 
neutron source for fusion material studies and other applications [1, 2]. The projected neutron source of plasma type 
is based on the gas dynamic trap (GDT), which is a special magnetic mirror system for plasma confinement [3]. 
Essential progress in plasma parameters was performed in recent experiments at the GDT facility in the Budker 
Institute (see Fig.1), which is a hydrogen (deuterium) prototype of the source [4]. This is a 7 m long axisymmetric 
mirror trap with high mirror ratio (B0 = 0.3 T, Bm up to 15 T) for two-component plasma confinement. Warm 
maxwellian plasma is confined in a gas dynamic regime, which is characterized by collisional particle losses through 
small magnetic “bottlenecks” into the end chambers of the device. An inclined injection of eight deuterium atom 
beams (with energy 20-25 keV and total power 5 MW) produces fast sloshing ions oscillating back and forth 
between the hills of the magnetic field. The peaks of the fast ion density appearing near to their turning points 
represent the local volumes of high plasma pressure and intense fusion neutron production, which is important for 
GDT-based neutron source project. 

Stable confinement of hot-ion plasmas with the relative pressure β exceeding 0.5 was demonstrated. In these 
experiments the density of fast deuterons with the mean energy of 10 keV reached 5x1019 m-3. The result was 
obtained by using a new efficient method of transverse plasma confinement, so called “vortex confinement” [5]. 
Shear flows, driven via biased end plates and limiters, in combination with finite-Larmor-radius effects are shown to 
be efficient in confining high-beta plasmas even with a magnetic hill on axis. The maximal electron temperature was 
increased up to 1 keV that corresponds to electron temperature in first tokamaks. The result was achieved due to the 
additional electron cyclotron resonance heating (ECRH) by two 54.5 GHz gyrotrons with 0.4 MW power each [6]. It 
should be noted that the experimentally obtained electron temperature in GDT substantially exceeds previously 
predicted [2] limit for Te in a magnetic mirror trap with neutral beam injection: Te ~ 0.01 Einj, were Einj is the energy 
of injected neutral atoms. Thus it is possible to abandon this prediction and use in the mirror-based neutron source 
modeling a self-consistent value of the electron temperature. 
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RESULTS OF THE NEUTRON SOURCE SIMULATIONS 

Table 1 presents a summary of simulation results for several GDT variations. The first column (a) shows the 
GDT experimental parameters were also simulated by the numerical codes described above. Results of this 
simulation are in a good agreement with experimental data, which is the best proof of our numerical tools. The 
second column (b) presents parameters of the GDT-U project—a possible next step of the GDT experiment. 
Detailed description of this numerical research will be presented by E. Kolesnikov in [18].  

TABLE 1. Main results of GDT and GDT-base neutron source simulations:  
 (a) (b) (c) (d) 
Parameters GDT exp. GDT-2 (next) GDT-NS GDMT-NS 

Magnetic field, B0/Bm (T) 0.34/12 0.5/15 1/15 1/9 
Effective mirror ratio, k 35 30 15 75 
Mirror-to-mirror distance, L (m) 7 7 10 10 
NB injected/heat power, (MW) 5/3 9.6/7.2 40/30 40/30 
NBI energy, Einj (keV) 25 20 65 65 
Pulse duration, (s) 0.005 0.03 continuous continuous 
Warm ion density, nw (1020 m−3) 0.3 0.5 0.2 0.3
Fast ion density, nf (1020 m−3) 0.5 0.7 2.5 3.5 
Mean ion energy, Ti (keV) 10 10 35 30 
Electron temperature, Те (keV) 0.25/0.9 * 0.4/1* 0.7 1.5 
Relative plasma pressure, β 0.6 0.5 0.5 0.5 
Plasma radius, a (cm) 14 10 8 8 
DT fusion neutron power, Pn (MW) – – 1.5 3 
DT fusion energy gain factor, Qfus – – 0.05 0.1 

* with an addition ECRH 
 
The numbers of DT fusion neutron source projects were simulated on the base of the achieved GDT 

experimental results. First of them is a model of GDT-NS proposed for fusion material research [2]. It is an axially 
symmetric mirror machine of the GDT type, 10 m long and with magnetic field B0 = 1 T and mirror ratio of 15. The 
source parameters are presented in the column (c) of Table 1. The GDMT based neutron source has improved axial 
confinement with the effective mirror ratio k up to 75 and high Te. The simulated GDMT-NS parameters are 
presented in column (d). They allow to propose the GDMT-NS as a basic for different applications including fusion 
material test facilities and moderate fusion driven (hybrid) systems (FDS). Optimization of GDT- and GDMT-based 
neutron sources for hybrid system is presented by D. Yurov in [19]. 

A fusion neutron source based on DD-fusion reaction (tritium-free fuel) attracts a lot of interest recently. The 
multiple-mirror open magnetic system for plasma confinement is a most suitable configuration for realization of 
such neutron source. We have calculated parameters of the DD-fusion neutron source with moderate neutron flux of 
about 1012 s-1cm-2 in a 3 m long and Ø46 cm section that can be surrounded by fission core.  The results of the 
simulations and possible applications of moderate DD-fusion neutron source are described in [20]. 
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