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Abstract. In this work, we propose a theory describing generation of electromagnetic waves in a thin beam-plasma system with
a characteristic transverse size comparable with the radiation wavelength. Such a theory can be useful for the description of the
processes responsible for EM emission in beam-plasma experiments at the GOL-3 multi mirror trap.

INTRODUCTION

The processes of electromagnetic (EM) emission from a beam-plasma system have long been of great interest with
regard to different astrophysical phenomena. In the terahertz frequency range (0.1—0.5 THz), similar radiation pro-
cesses are actively studied in laboratory beam-plasma experiments at the GOL-3T open trap. The main peculiarities
of these experiments are the small plasma size and relatively strong guiding magnetic field. It has been experimen-
tally found that the beam power converts to radiation power much more efficiently when the typical transverse size
of the beam-plasma system becomes comparable to the radiation wavelength [1]. These experiments have motivated
theoretical studies on the mechanism of EM emission in the thin plasma case [2]. The feature of this regime is that
a thin plasma column actually acts as an antenna which can efficiently radiate EM waves if a superluminal wave of
electric current is excited inside the plasma. The wave growing inside a homogeneous plasma column under the two-
stream instability cannot be the source for this radiation, since being in the Cherenkov resonance with the beam such
a wave has the sublight phase velocity. In a plasma with a longitudinal density modulation, however, the beam-driven
wave generates a long-wavelength sattelite in which the phase can move faster than light. Only such a scattered wave
enables to exchange the energy with vacuum electromagnetic waves. It is clear that a necessary condition for efficient
generation of EM radiation in such a scheme is the existence of a longitudinal inhomogeneity of the plasma density.
In turbulent plasmas typical to the experiments mentioned, such inhomogeneities are characterized by wide spectra
and radiate EM waves in all possible directions. But in the plasma with a fixed periodic density perturbation EM
waves generated via the antenna mechanism can form a narrow beam which is radiated in a single direction and can
be useful for various applications. Also the numerical simulations [3] of the beam injection into a thin plasma column
have shown that such a quasi-regular periodic density perturbation can be created self-consistently even in an initially
uniform plasma.

BEAM-PLASMA ANTENNA

Let us study how efficiently EM radiation is generated by a beam-plasma system with a finite transverse size. Firstly,
we consider the two-dimensional problem in which beam and plasma particles occupy the infinite plane layer with the
thickness 2l, immersed in the uniform magnetic field B0 (Fig. 1). If the plasma density is modulated along the layer
n = n0 + δn cos qz, the electron beam with the density nb and velocity vb is able to transfer its energy to EM radiation
via the plasma antenna mechanism. Indeed, if the beam propagating inside the plasma excites the wave of longitudinal
electric current with the superluminal phase velocity (ω/K‖ > c), the plasma layer acts as an antenna radiating EM
waves with the frequency ω and wave vector K = (K‖, 0,K⊥), where the transverse to this layer component of wave



FIGURE 1. Geometry of the problem.

vector takes formK2
⊥ = 1−K2

‖
, in units of ω/c. Inside the plasma, EM fields E(x) exp(i(K‖ω/c)z− iωt) driven by this

current of nonuniformly distributed electrons can be found from the following system of differential equations

E′′z + a1Ez − a2E′y = −
iJ
ω

(
1 − K2

‖ /ε
)
, (1)

E′′y + a3Ey + a4E′z = 0, (2)

where the prime denotes the derivative with respect to the transverse coordinate x,J = j0/(en0c) is the dimensionless
amplitude of radiating current density,

a1 = η
(
1 − K2

‖ /ε
)
, a2 = K‖g/ε, a3 = ε − K2

‖ −
g2

ε − K2
‖

, a4 =
K‖g
ε − K2

‖

, (3)

and ε, g and η are the components of the dielectric tensor for the cold magnetized plasma. Hereinafter, all quantities
are presented in the dimensionless form: the wave frequency ω̂ and electron cyclotron frequency Ω̂ are measured
in units of the plasma frequency ωp =

√
4πn0e2/me, EM fields — in units of mecωp/e, lengths — in units of c/ω.

The solution of the system can be represented as the sum of two different plasma eigenmodes and the forced term
originating from the current:

Ein
z = b1

(
C1eiκ1 x + C2e−iκ1 x

)
+ b2

(
C3eiκ2 x −C4e−iκ2 x

)
−

iJ
ηω̂

, (4)

Ein
y = b3

(
C1eiκ1 x −C2e−iκ1 x

)
+ b4

(
C3eiκ2 x + C4e−iκ2 x

)
, (5)

where

κ2
1,2 = 1

2

(
a1 + a3 + a2a4 ∓

√
(a1 + a3 + a2a4)2 − 4a1a3

)
, (6)

b1 = a3 − κ
2
1, b2 = iκ2a2, b3 = −iκ1a4, b4 = a1 − κ

2
2. (7)

At the plasma boundaries, this solution should be matched with the vacuum EM fields:

Eout
z = C5eiK⊥(x−l), Eout

y = C6eiK⊥(x−l), (x > l); (8)

Eout
z = C7e−iK⊥(x+l), Eout

y = C8e−iK⊥(x+l), (x < −l). (9)

Finding the energy flux density and taking into account the slow dependence of the current amplitude on longitudinal
coordinate z, we can write the full radiation power Prad in units of beam power Pb:

P =
2K⊥ω̂3(F1 + F2)

(γb − 1)n̂bv̂bl(ω̂2 − 1)2

Lz∫
0

|J|2dz. (10)



Here, Lz is the plasma length, γb — the beam relativistic factor, n̂b is the beam density in units of n0 and v̂b is the beam
velocity in units of c. In this expression we separate contributions from different plasma eigenmodes:

F1 =

∣∣∣∣∣b5 sin(κ1l) + Gb6 sin(κ2l)
Z

∣∣∣∣∣2 , F2 =

∣∣∣∣∣b3 sin(κ1l) + Gb4 sin(κ2l)
Z

∣∣∣∣∣2 , (11)

where

Z = b1 cos(κ1l) + iK⊥b5 sin(κ1l) + G (b2 cos(κ2l) + iK⊥b6 sin(κ2l)) , (12)
G = −

b3
b4

(κ1 cos(κ1l) − iK⊥ sin(κ1l)) / (κ2 cos(κ2l) − iK⊥ sin(κ2l)) , (13)

b5 = −κ1b1 − iK‖b3(ε − K2
‖
− κ2

1)/g, (14)

b6 = −κ2b2 − iK‖b4(ε − K2
‖
− κ2

2)/g. (15)

Let’s now specify the process responsible for the excitation of the superluminal current wave in the plasma. The
unstable spectrum of the cold beam-plasma system is dominated by the longitudinally propagating wave (k‖ = ω/vb,
ω = ωp(1 − n1/3

b /(24/3γb))). In a uniform plasma, such a wave cannot radiate. However, in the periodically perturbed
plasma with the wave number q, it excites the wave of longitudinal electric current with the frequency ω and the wave
number k‖ − q. EM emission is possible, when the following inequality is true: 1 − v̂b < Q < 1 + v̂b, where Q = q/k‖
is the dimensionless period of density modulation. The angle of EM radiation: θ = arctan(

√
v̂2

b − (1 − Q)2/(1 − Q)).
The current amplitude in (10) and the wave number of this current wave are determined by the expressions: J =

iδ̂nE0(z)/(4ω̂) and K‖ = (1 − Q)/v̂b, where δ̂n is the modulation depth in units of n0 and E0(z) — the dimensionless
wave amplitude of the dominant beam mode. Substituting this current amplitude, we can rewrite the relative radiation
power in the form

P =
δ̂n

2
F1(l)

8(γb − 1)n̂bv̂b
√

1 − ω̂2

Lz∫
0

E2
0dz, F1(l) =

K⊥ω̂(F1 + F2)
l(1 − ω̂2)3/2 . (16)

In the particular case, when the modulation period equals to the wavelength of the beam-driven mode (Q = 1), EM

FIGURE 2. (a) The factor F1(l) as a function of plasma thickness for ω̂ = 0.94 and Q = 1. (b) Window of plasma transparency to
the generated EM waves ( n̂b = 0.01, v̂b = 0.9, Ω̂ = 0.9, δ̂n = 0.1).

radiation is directed across the plasma layer. In this case, the first plasma eigenmode corresponds to the O-mode
polarized along the magnetic field with the dispersion relation κ1 = i

√
η = iκ, and the second one corresponds to the

X-mode polarized perpendicularly to the magnetic field. The latter mode cannot interact with the longitudinal current.
Hence, only the first mode makes a contribution in the radiation power. Since the transverse wave number of O-mode
becomes purely imaginary, this mode can penetrate in the plasma only to the skin-depth. The factor F1(l) takes the
simple form

F1(l) =
sinh2(κl)

κl
[
ω̂2 + sinh2(κl)

] (17)



and describes the decrease of radiation efficiency in thick plasmas according to the law 1/l (Fig. 2(a)). In this case, the
radiation efficiency can reach 5−10%. This result coincides with the results obtained in Ref. [4]. The conclusion about
the dependence of the radiation efficiency on the plasma thickness has been confirmed by numerical simulations. But
this is not the most optimal case. More efficient generation of EM waves should be achieved in the regime of oblique
emission, when the plasma is transparent for the emitted waves.

Let’s find out how the plasma transparency changes with variations of the parameter Q. For this purpose, we
study the dependences κ2

1,2(Q). On Fig. 2(b) one can see that for a sufficiently strong magnetic field there are the
regions of plasma transparency for both modes. These regions are bounded by the equations κ2

1 = 0 and κ2
1 = κ2

2.
Corresponding solutions for Q:

Q±1 = 1 ± v̂b
√
ε + g, Q±2 = 1 ± v̂b

√
ε + gξ, (18)

where ξ = −(g(η + ε) + 2
√
εη(g2 − (η − ε)2))/(η − ε)2. In this way, the region of complete plasma transparency is

bounded by Q+
1 < Q < Q+

2 and Q−2 < Q < Q−1 . Let us plot the relative power of EM emission for this regime.
The amplitude of the beam-driven wave in (16) is assumed to reach the level of saturation: E0 = γ3

bΓ̂2v̂b, where
Γ̂ = Γ/ωp =

√
3 n̂1/3

b /(24/3γb). The radiating plasma region is characterized by the length Lz ≈ 3v̂b/Γ̂, required for
beam trapping.

FIGURE 3. (a) Radiation efficiency P as a function of the modulation period and plasma thickness for the plane antenna with the
parameters n̂b = 0.01, v̂b = 0.9, Ω̂ = 0.9, δ̂n = 0.1. (b) Transverse structure of electric fields for plasma eigenmodes at the point of
the global maximum of P.

From Fig.3(a) we can see that in the region of complete plasma transparency the radiation efficiency significantly
increases. Moreover, in this region we observe a pronounced periodic structure. This can be explained by the fact
that the plasma thickness reaches an even or odd number of transverse half-wavelengths of plasma eigenmodes. The
curves corresponding to conditions κ1l = πn/2 (black) and κ2l = πm/2 (red) for odd n and m are shown in Fig.3(a).
The largest maximum is reached at the position where the plasma thickness equals to one half-wavelength of the first
plasma mode and three half-wavelengths of the second mode. This situation is schematically shown in Fig.3(b). This
is explained by the fact that the work of the uniform radiation current under the field of plasma wave becomes the
maximum when we integrate over the half-wavelength plasma and the minimum when the plasma width is raised to
the wavelength.

To apply these results to laboratory experiments, we can rewrite the obtained formula in a more realistic cylin-
drical geometry. As a result, we get a picture similar to the previous case (Fig.4).

SUMMARY

The proposed analytical theory has predicted that, at certain emission angles, plasma becomes transparent to radiation
and the whole plasma volume may be involved in generation of EM waves. In this regime conversion of the beam
power to radiation power becomes very efficient and, moreover, remains high enough (1—10%) even in a relatively
thick plasma, the transverse size of which is almost an order of magnitude greater than the radiation wavelength. In



FIGURE 4. Radiation efficiency P as a function of the modulation period and plasma radius.

particular, it means that, in the laboratory experiments, the terahertz radiation with the frequency 0.5 THz can be
generated by the beam with the diameter up to 5 mm.
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