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Abstract. Experiments and theory on electron columns have characterized a novel algebraic damping of diocotron-like 

modes, caused by a small flux of halo particles through the resonant layer [1]. The damping rate is proportional to the 

flux. We have also investigated the diocotron instability which occurs when a small fraction of ions is transiting the 

electron plasma [2]. Dissimilar bounce-averaged EB drift dynamics of the ions and electrons polarizes the diocotron 

mode density perturbations, developing instability analogous to the classical flute instability. The exponential growth rate 

is proportional to the fractional neutralization and to the phase separation between electrons and ions in the wave 

perturbation. Here, we have shown that the flux-driven algebraic damping eliminates the ion-induced exponential 

instability of diocotron-like modes. Physically, the electric field from the resonant particles in the low-density halo acts 

back on the dense plasma core, causing EB drift motion of the core back down toward the trap axis, resulting in a 

damping of the mode. 

FLUX-DRIVEN ALGEBRAIC DAMPING OF DIOCOTRON MODES 

Nonneutral plasmas confined in Penning-Malmberg (PM) traps have been, and continue to be, the subject of 

comprehensive studies, driven in a large part by a broad range of applications. Diocotron modes in a PM trap are the 

EB drift orbits of the plasma arising due to the electric field from the image charge induced at the surface of the 

confining walls (electrodes). They can be described as surface modes propagating azimuthally around the core of 

nonneutral plasma columns, or as the orbit of a column displaced off-axis by a distance 𝐷. The plasma column 

consists of a high-density core (𝑛𝑐~107𝑐𝑚−3) surrounded a relatively low-density halo (𝑛ℎ~0.01𝑛𝑐) of outward 

drifting particles. At the critical radius in the halo, the azimuthal EB drift rotation velocity of the halo matches the 

phase velocity of the mode potential, and their resonant interaction gives rise to (first exponential in time) Landau 

damping [3]. For many years, it was thought that there can be no wave-particle resonance for the first azimuthal 

(𝑚𝜃 = 1) diocotron mode, since its resonant radius is at the wall (𝑟𝑟𝑒𝑠 = 𝑅𝑤) and the unperturbed density is zero at 

the wall. 

However, recent experiments have observed a novel algebraic damping of the 𝑚𝜃 = 1 diocotron mode when a 

weak transport process sweeps a low density halo of particles out from a dense central core to the wall [1, 4]. This 

new flux-driven damping mechanism is also observed for diocotron waves with higher azimuthal wave numbers 

𝑚𝜃 = 2, 3, ... The algebraic damping begins at a time 𝑡∗ when the halo reaches the resonant radius of the mode 

𝑟𝑟𝑒𝑠(𝑚𝜃), where 𝜔𝑚 = 𝑚𝜃𝜔𝐸×𝐵(𝑟𝑟𝑒𝑠). Here 𝜔𝑚 ≡ 2𝜋𝑓𝑚 is the mode frequency, 𝜔𝐸×𝐵(𝑟) is the EB drift rotation 

frequency, and 𝐷𝑚(𝑡) is the mode amplitude. Then the damping proceeds as 

 

  𝐷𝑚(𝑡∗ + ∆𝑡) = 𝐷𝑚(𝑡∗) − 𝛾∆𝑡,  (1) 

 

where the algebraic damping rate 𝛾(𝑚𝜃) is proportional to the flux of halo particles 

 

  𝐹 ≡ −(1/𝑁)𝑑𝑁/𝑑𝑡  (2) 



through the resonant layer 2 𝑟𝑟𝑒𝑠, i.e., 

 

  𝛾(𝑚𝜃) = 𝛽(𝑚𝜃)𝐹, where  𝛽(𝑚𝜃)~1.  (3) 

 

This gives 

 

  𝑑𝐷𝑚 𝑑𝑡⁄ = −𝛾,  (4) 

 

which is quite different from an exponential decrease. 

Figure 1 shows the cross section of an electron plasma column that has been displaced off the trap axis through 

the excitation of a 𝑚𝜃 = 1 (displacement) diocotron mode. The displacement has magnitude 𝐷 in the direction of 

�̅� = 0. The gray lines are equipotential contours as seen in the mode frame. In this frame the EB drift flow is along 

the equipotential curves. The black-to-yellow shaded region represents the relatively high density plasma core. In 

this region the equipotential curves are essentially displaced circles, until the resonant region near the wall. 

Near the left edge are the “cat’s eye” orbits, which show the equipotential contours for particles that are trapped 

in the wave trough. In order to make the “cat’s eye” orbits easier to spot in Fig. 1, the ratio of the displacement to the 

wall radius (i.e., 𝑑 ≡ 𝐷/𝑅𝑤) was taken to represent the largest of experimental values, i.e., 𝑑 = 0.1. The green 

dotted-dashed equipotential contour in Fig.1 is a critical path just inside the (presumptive) blue dashed scrapeoff 

layer (SOL) at �̅� = 0. The SOL is at least as thick as a cyclotron radius, but not modelled in any detail. When 

transport moves a particle through this critical contour, the particle hits the SOL and is absorbed by the wall before 

returning to �̅� = 0. The red solid curve in Fig. 1 shows the trajectory of such a particle. 

 

 

FIGURE 1. Instantaneous cross section of an electron plasma column in the diocotron displacement �⃗⃗� . The black-to-orange 

filled region is the dense plasma core. The gray lines are the equipotential contours in the mode frame. The green dotted-dashed 

curve is resonance contour. The red solid curve is a resonant particle trajectory. The blue dashed curve is the scrape-off layer. 

 

As particles are swept across the resonant layer, there is an up-down asymmetry in the distribution of resonant 

particles and corresponding image-charges. This asymmetry creates a component of electric field which is transverse 

to the displacement �⃗⃗�  and causes the EB drift motion of the dense plasma core back toward the trap axis, that is, a 

damping of the mode. A much more detailed description of the experiment and theoretical considerations can be 

found in Refs. [1, 46], correspondingly. Physically, the electric field from the resonant particles in the halo acts 

back causing EB drift motion of the plasma core, and this motion produces a slow rate of change of the diocotron 

wave amplitude 𝑑(𝑡) [5]. 

In our experiments we have quantitatively measured this novel algebraic damping of the first two azimuthal 

diocotron modes [1, 4]. In principle, this flux-driven damping would also apply for 𝑚𝜃 = 3 and higher modes, but 

their resonant radii are much closer to the plasma core radius 𝑅𝑐 by 𝑟𝑟𝑒𝑠(𝑚) = 𝑅𝑐/√1 − (1/𝑚)(1 − 𝑅𝑐
2𝑚/𝑅𝑤

2𝑚), 

and such modes typically already suffer large ordinary Landau damping. 



ION-INDUCED INSTABILITY OF DIOCOTRON MODES 

Instabilities of diocotron modes are commonly observed when small ion fractions are introduced to pure electron 

plasmas. For many years, it was thought that these instabilities are driven by the different drift rotation frequencies 

caused by inertial effects (mass difference). However, in past experiments [2, 7] we have shown that an ion 

contamination of pure electron plasmas leads to the ion-induced diocotron (IID) instability, determined by the 

differences in z-bounce-averaged 𝜔𝐸×𝐵(𝑟) for electrons and ions with different z-bounce regions (as in “nested” or 

double-well traps configuration). Quite often, an ion fraction is continuously produced in warm(ish) electron plasma 

experiments, and special arrangements need to be made to prevent those ions from being trapped. 

Broadly speaking, the dissimilar bounce-averaged EB drift dynamics of the ions and electrons polarizes the 

diocotron mode density perturbations, developing instability analogous to the classical curvature-driven flute 

instability. The resulting exponential growth shows 𝑑𝐷 𝑑𝑡 = Γ𝐷⁄  , with growth rate Γ proportional to the fractional 

neutralization (𝑁𝑖/𝑁𝑒) and to the phase separation ∈𝜑 between electrons and ions in the wave perturbation, i.e., 

 

  Γ𝑚 = (
𝑁𝑖

𝑁𝑒
) ∈𝜑 𝑓𝑚,  (5) 

 

where ∈𝜑≤ 1 (see [2]). 

Figure 2 shows the measured growth rate of the 𝑚𝜃 = 1 IID instability as a linear function of the background 

pressure. Here the primary ions are coming along magnetic field lines as a result of ionization of a residual gas by 

the 30 eV electron beam continuously emitted by the electron injection filament. Thus the acquired fractional 

neutralization is proportional to the background pressure 𝑃. As one can easily estimate, a typical ion fraction formed 

at these ultra-high vacuum conditions is indeed very small, namely 𝑁𝑖/𝑁𝑒~Γ/𝑓1~10−5 (here, at magnetic field 𝐵 =
12 𝑘𝐺 we have 𝑓1(𝐵) ≈ 2.2 𝑘𝐻𝑧). The evident “offset” at the zero pressure asymptote is due to ionization of 

neutrals absorbed by the entrance (injection) grid. 

 

 

FIGURE 2. Exponential growth rates Γ of the ion-induced diocotron (IID) instability as a function of the background pressure P. 

FLUX-DRIVEN MITIGATION OF THE ION-INDUCED DIOCOTRON INSTABILITY 

In Fig. 3(a) the solid blue line shows an example of the IID instability growing exponentially from the noise 

level amplitude of 𝑑~10−4 over 3 decades in 300 sec confinement time. Here, the exponential growth rate is Γ/𝑓1 ≈
9.7 ∙ 10−6, which is close to its maximum value in Fig. 2. For amplitudes 𝑑 > 0.1 the mode behavior becomes 

highly nonlinear. In this particular evolution the electron temperature is kept above 𝑇 ≥ 0.5 𝑒𝑉 by continuously 

applying a non-resonant wiggle heating. 
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When the wiggle heating is turned off, cyclotron cooling of electrons (with time constant 𝜏𝑐(12 𝑘𝐺) ≈ 3 sec) 

drives plasma temperature down to its room (wall) values 𝑇 ≈ 0.03 𝑒𝑉. For ill-understood reasons, a low density 

halo then starts to leak out of the core, rather than the whole core expanding slightly. In about 30 sec after the 

cooling, the front of the halo reaches the wall radius (equal to the Landau-resonance radius for the 𝑚𝜃 = 1 diocotron 

mode), and the flux-driven algebraic damping starts to contribute to the mode amplitude evolution, as 𝑑(∆𝑡) =
𝑑∗exp(Γ∆𝑡)  𝛾∆𝑡 . If one has > Γ(𝑃) ∙ 𝑑∗ , then the instability is suppressed (mitigated) down to the noise level. 

Figure 3(a) shows several IID instability evolutions with different halo flux “turn-on” times followed by the fast 

algebraic damping of the mode. 

However, if the instability growth rate Γ and/or the acquired amplitude 𝑑(𝑡) are already big enough, so that the 

algebraic damping rate < Γ(P) ∙ 𝑑∗ , then the flux of charged particles through the Landau-resonant layer leads only 

to a moderation of the instability growth rate Γ, as shown for comparison in Fig. 3(b). By its very nature the 

algebraic damping of exponential instabilities is most effective at low wave amplitudes 𝑑(𝑡), so this new mitigation 

mechanism can be highly effective at preventing the exponential ion-induced instability, even for seemingly small 

particle fluxes through the resonant layer. Any algebraic damping wins over exponential instabilities from the noise. 

 

 
                                       (a)                                        (b) 

FIGURE 3. Flux-driven mitigation of the IID instability: 

(a) The solid (blue) line shows exponential growth of the 𝑚𝜃 = 1  diocotron mode from the noise level for over 3 decades in 

amplitude when no halo particles flux formed. The dotted (red), short-dashed (green), and long-dashed (purple) lines show the 

IID instability evolutions with different growth rates Γ(𝑃) and 160 sec, 60 sec, and 20 sec halo initiation times, respectively. 

(b) Examples of the 𝑚𝜃 = 1 IID instability evolutions near the mitigation threshold  Γ(𝑃) ∙ 𝑑∗ ≈ 𝛾. Flux-driven damping for 𝑡 ≥
45 𝑠𝑒𝑐 lessens the instability, or causes only a moderate damping. 

CONCLUSIONS 

In summary, the linear-in-time algebraic damping of both 𝑚𝜃 = 1 and 𝑚𝜃 = 2 diocotron modes has been 

demonstrated in our experiments. This damping begins when an outward flux of EB drifting halo particles reaches 

the Landau-resonant radius 𝑟𝑟𝑒𝑠(𝑚𝜃), and the damping rate 𝛾 is directly proportional to the flux value. This flux-

driven damping effectively eliminates the ion-induced instability of diocotron modes, and one may suggest that a 

similar flux-driven damping might be used to mitigate the classical flute instabilities in cylindrical (quasi-)neutral 

plasmas confined in non-uniform magnetic fields [810]. 
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