

The construction technique of the high granularity and high transparency Drift Chamber of MEG II

Tassielli G.F. - *INFN* Lecce, & Mathematics and Physics Dept., *University of Salento*, on behalf of the MEG2 Collaboration

Instrumentation for Colliding Beam Physics 2017

02/28/2017

Outline

- MEG-I Drift Chamber
- MEG-II Drift Chamber
 - Novel approach at construction technique of high granularity and high transparency Drift Chambers
 - The wiring Robot and the stringing procedures
 - The assembly procedures
 - Front End electronics
 - Expected performance
- Summary

MEG-I Drift Chambers

Eur. Phys. J. C 73 (2013) 2365

- 16 chambers
- Each chamber is composed of
 - 2 staggered arrays of drift cells
 - 1 signal wire (25 µm NiCr) and 2x2 Vernier cathode strip made 0,45 µm alluminum strip on 15 µm kapton foil
 - □ He:C₂H₆ (50/50)

Full e+ turn : ~ $2.0 \ 10^{-3} X_0^{\circ}$

Events / (0.01 cm)

1.5

0.5

4

35

Events / (0.05 cm)

02/28/2017

G.F. Tassielli - INSTR 2017 (BINP) Novosibirsk

4/29

MEG-I DC: need to be upgraded

Variable	Foreseen MEG	Obtained MEG	For eseen $\mathrm{MEG}^{\mathrm{UP}}$
$\Delta E_{\gamma}(\%)$	1.2	1.7	1.0
$\Delta t_{\gamma} (\mathrm{ps})$	43	67	_
γ position (mm)	4(u,v), 6(w)	5(u,v), 6(w)	2.6(u), 2.2(v), 5(w)
ΔP_e (keV)	200	306	130
e^+ angle (mrad)	$5(arphi_e),5(artheta_e$)	8.7(φ_e), 9.4(ϑ_e)	$5.3(\varphi_e),3.7(\vartheta_e$)
$\Delta t_e \ (ps)$	50	107	-
$\Delta t_{e\gamma}$ (ps)	65	122	84
e^+ efficiency (%)	90	40	88
γ efficiency (%)	> 40	63	69
trigger $efficient(\%)$	~ 99	~ 99	~ 99

- MEG-I DC did not perform as expected.
- Main problems were:
 - □ Few hits on the positron track (8-16)
 - Active volume of the detector only partly instrumented
 - Unmatched coverage with Timing counter
 - Large track extrapolation to Timing counter

The MEG upgrade (MEG II)

Goal: 10x improvement in sensitivity ($\sim 5 \times 10^{-14}$)

efficiency of transfer from DC to TC improves $40\% \rightarrow 80\%$

- 1. Increase the number of stopped muons on target
- Reduce the target thickness 2.
- Reduce the tracker radiation 3. length and improve on granularity, resolution and efficiency
- Improve matching DC-TC 4.
- Improve TC granularity 5
- Extend calorimeter 6 acceptance
- 7. Improve photon energy, position and timing resolution for shallow events
- New RMD conters 8
- New DAQ for higher 9. bandwidth

MEG-II Drift Chamber

- Single volume, small cells, full stereo cylindrical drift chamber;
- A large field to sense wires ratio (5 : 1) allows for thinner field wires, thus reducing the wire contribution to multiple scattering and the total wire tension on the the end-plates.
- Light gas mixture (85% He 15% iC₄H₁₀)
- Positron efficiency > 90% (better coupling with TC, very short extrapolation needed);
- Single hit resolution (~110 μm) and gas aging effects verified on prototypes and test stations (at 7x10⁷μ/s and 10⁵ gain, Δg/ΔV ~ 4%/V over 3 years equivalent).
- Cluster Timing readout capabilities (high bandwidth, high sampling rate) to further reduce spatial resolution *.

ltem	Description	Thickness	
		10-	3 X ₀
MEG target	(140 µm plastic)	0.28	0.28
Sense wires	(20 µm W)	0.41	
Field wires	(40 and 50 μm AI)	0.33	0.78
guard wires	(40 μm AI)	0.04	
inner cylinder	(20 µm Kapton)	0.21	0.21
Inner gas	(pure He)	0.06	0 50
Tracker gas	(He/iBut. 85/15)	0.53	
Total	1 full turn w/o target	1.	58

* For details see G.Chiarello's poster:

"Application of the Cluster Counting and Timing techniques to improve the performance of the high transparency Drift Chambers for modern High Energy Physics experiments."

MEG-II Drift Chamber

Chamber characteristics:

- r_{in}~ 16cm r_{out}~ 30cm
- L ~ 2m
- 10 layers
- 12 cylindrical sectors
- 16 cells per sector
- full stereo with large stereo angles (102÷147 mrad)
- small square cells
 (5.8÷7.8 mm at z=0, 6.7÷9.0 at z=±L/2) (see pictures:)

1920 sense wires: *W*(*Au*) 20 μm **7680** field wires: *Al*(*Ag*) 40 μm **2688** guard wires: *Al*(*Ag*) 50 μm **12288 wires in total** (~ **12 wires/cm**²)

High wire densities prevent the use of feed-through, needing novel approaches to the wiring procedures

DC stringing: the old way

The Old Way

Bernardo Strozzi - Le tre Parche - Venezia, circa 1620

The KLOE Drift Chamber 45 m³ > 52,000 wires He/iC_4H_{10}

02/28/2017

MEG-II DC: the novel way

- Separate the end-plate function: mechanical support for the wires and gas sealer;
- Find a feed-trough-less wiring procedure.

The solution found for MEG II:

- end-plates numerically machined from solid Aluminum (mechanical support only);
- Field, Sense and Guard wires placed azimuthally by Wiring Robot with better than one wire diameter accuracy;
- wire PC board layers (green) radially spaced by numerically machined peek spacers (red) (accuracy < 20 μm);
- wire tension defined by homogeneous winding and wire elongation

 $(\Delta L = 100 \mu m \text{ corresponds to} \approx 0.5 \text{ g});$

- Drift Chamber assembly done on a 3D digital measuring table;
- build up of layers continuously checked and corrected during assembly
- End-plate gas sealing will be done with glue.

MEG-II DC: the novel way

The carbon fiber outer cylinder is the only mechanical structure supporting the wire tension

G.F. Tassielli - INSTR 2017 (BINP) Novosibirsk

11/29

G.F. Tassielli - INSTR 2017 (BINP) Novosibirsk

12/29

WIRING SYSTEM (Klotho and Lachesis): wire position

02/28/2017

WIRING SYSTEM (*Klotho and Lachesis*): wire tension

The wire mechanical tension is delivered by an electromagnetic clutch and its on-line monitored by a high precision strain gauge, a real-time feedback system correct any variation.

μ e I

SOLDERING SYSTEM (Atropos)

- The soldering phase is accomplished by an LASCON 501 IR laser soldering System using a low temperature (180 ° C) melting tin.
- The laser system is controlled by the NI CompactRIO and is synchronized with the positioning system.
- The wires, during the soldering phase, are protected with a Mylar foil to avoid flux splashing.

EXTRACTION SYSTEM (Labirinth and Theseus)

- The wound layer of soldered wires must be unrolled from the winding drum and de-tensioned for storage and transport to the assembly station at INFN Pisa.
- The wire PCBs are lifted off from the cylinder with a linear actuator connected to a set of vacuum operated suction cups.

02/28/2017

CHECK MECHANICAL TENSION WIRE

- The system measures the resonant frequency of the wire oscillations induced by a sinusoidal HV signal.
- The system cycles on each wire by multiplexing the HV signal.
- Each cycle of 16 wires takes about 10 min.

TRASPORT FORM LECCE TO PISA

 During transport, 3 sets of 13 frames each are wrapped in a welded sealing bag, to avoid contamination, and flushed with dry gas, to avoid water vapor condensation

compensating

MEG-II DC: assembly-I

During the assembly phase, the endplates are placed at a shorter distance than nominal to avoid stressing the wires wire tension

MEG-II DC: assembly-II

- The mounting procedure is performed with an adjustable arm and a flipping arm (used only for flipped layers);
- The wire-PCBs, fixed on the transport frame, are anchored to the mounting arm with a clip and released from the frame.

MEG-II DC: assembly-III

- The mounting arm (with the multi-wire layer) is then placed next to the end plates for the engagement procedure.
- The mounting arm is fixed to a support structure to prevent damaging the wires.
- This structure transfers the multi-layer wire on the end plates between two spokes.

22/29

MEG-II DC: assembly-IV

- This procedure is repeated for each of the 12 sectors.
- After completing the installation of one layer, a survey is performed on the radial layer position.
- Half cell spacers are pressed and glued in position with a calibrated pressure-sensitive film.
- The procedure is repeated for all layers.

MEG-II DC: assembly-V

- After assembling all layers, the DC is closed with the carbon fiber outer panels.
- The DC will be put vertically to seal the end plate (wire-pcb and spacer).
- After sealing, the mechanical supports and the extender structure for the front-end electronics will be mounted.
- The inner mylar cylinder will be mounted after shipping the DC to PSI.

All mounting procedure, together with the DC insertion in the COBRA magnet has been successfully tested with a Mock-up chamber mechanically identical

MEG-II DC: Status

At today:

- The first 4 layers have been wired. In the last weeks a wiring rate better than expected has been reached;
- The first 3 layers have been mounted, the assembly procedure has been reliably tested.

analog gain and Bandwidth after 5m cable: 19db and \sim 900MHz

Layout:

- 2 stage amplifiers based on commercial devices:
 - ADA4927 (AD) Ultralow distortion current feedback
 - THS4509 (TI) Wideband low noise fully differential amplifier
- Pre-emphasis implemented on both stages in order to balance the attenuation of output cable
- High overall (after 5m of cable) bandwidth (FE input to DRS WaveDream input): ~1GHz
- Low power: 50mW @ ±2.5V

1280 out of 1920 channels (2/3) readout on both ends

MEG-II DC: expected performance

single cell rate per cm along wire from Michel Events at 7e7

02/28/2017

G.F. Tassielli - INSTR 2017 (BINP) Novosibirsk

26/29

MEG-II DC: expected performance

G.F. Tassielli - INSTR 2017 (BINP) Novosibirsk

27/29

MEG-II DC: summary

	MEG	MEG2
single hit contribution to m.s.	2.6×10 ⁻⁴ X ₀	4.6×10⁻⁵ X ₀
transverse position resolution	210 μm	110 μm
e ⁺ momentum resolution	330 KeV/c	94 KeV/c
e⁺∖ angle	9.4 mrad	6.2 mrad
e⁺	8.4 mrad	6.5 mrad
e⁺ y vertex	1.6 mm	0.9 mm
e⁺ z vertex	2.5 mm	1.1 mm
DC-TC matching efficiency	41%	89%

remember!

 $N_{\text{sig}} = R_{\mu} \times T \times \Omega \times \mathcal{B} \times \epsilon_{\gamma} \times \epsilon_{\text{e}} \times \epsilon_{\text{s}}$ $N_{\text{acc}} \propto R_{\mu}^{2} \times \Delta E_{\gamma}^{2} \times \Delta P_{\text{e}} \times \Delta \Theta_{\text{e}\gamma}^{2} \times \Delta t_{\text{e}\gamma} \times T$

Summary

- Strong motivations for an upgraded MEG experiment aiming at setting an upper limit $B(\mu^+ \rightarrow e^+ + \gamma) < 5 \times 10^{-14}$.
- The upgrade of the positron tracker consists in a a full stereo and high transparency Drift Chamber.
- The high density of wires constituting the DC has required a novel approach to the wiring procedure.
- Reached chamber accuracy:
 - stereo angle < 35 µrad wire position on PCB pad < $25 \,\mu m$ cell width (wire pitch) < $1 \,\mu m$ cell height (spacer) < $50 \,\mu m$ < 0.1 g wire tension PCB offset vs spoke < 50 µm chamber length < 200 µm
- Its expected performance is in line with the requirements.
- The DC will start commissioning at PSI in fall 2017.

Backup

The MEG CoBRa Magnet

Michel hit rate versus radial distance

• Constant bending radius independent of emission angles

G.F. Tassielli - INSTR 2017 (BINP) Novosibirsk

INFN

G.F. Tassielli - INSTR 2017 (BINP) Novosibirsk

33/22

MEG-II DC: aging

@ 7×10⁷ ∫/s and 10⁵ gas gain
expect ≈ 6 nA/cm in the hottest point
≈ 0.32 C/cm
integrated over 3 years data taking
(however, @ G = 10⁵, dG/dV ≈ 3-4%/Volt)

MEG-II DC: single hit resolution

Spatial

resolution I

MEG-II DC: single hit resolution

Staggered 3-cells method under Si telescope

Average hit resolution $\int_{drift} = 108 \pm 5 \,\mu m$

MEG-II DC: single hit resolution

Beam test at BTF – LNF

Average hit resolution $\int_{drift} = 116 \pm 4 \,\mu m$

G.F. Tassielli - INSTR 2017 (BINP) Novosibirsk

38/22

Cluster Timing

From the **ordered sequence** of the electrons arrival times, considering the average time separation between clusters and their time spread due to diffusion, reconstruct the most probable sequence of clusters drif $[t_i^a]$ $i=1, N_a$

For any given first cluster (FC) drift time, the cluster timing technique exploits the drift time distribution of all successive clusters to $\{t_i^{\alpha}\}$ determine the most probable impact parameter, thus reducing the bias and the average drift distance resolution with respect to what is obtained from with the FC only.

MEG-II DC: gas system

basic gas mixture: 85% He – 15% iC₄H₁₀ (+ H₂O vapor?) DC volume \approx 350 liters 1 volume exchange /10 h

MEG-II DC: HV distribution

6 boards ISEG

EHS F230p 305F SHV 16ch 3kV, 3mA in a 10 slot crate

1 HV channel (≈ 1450 V) / 16 cells / sector / layer × 8 sectors × 10 layers = 80 channels instrumented active region (2/3 of chamber)
 1 HV channel / 64 cells / 4 sectors / layer × 4 sectors × 10 layers = 10 channels not instrumented region (1/3 of chamber) only for field distribution
 2 HV channels /2 double guard layers × 2 layers = 2 channels + 4 spares = total 96 channels

The MEG-I Detector

Eur. Phys. J. C 73 (2013) 2365

- Dedicated detector with non-symmetric coverage ($\Omega_{MEG}/4\pi = 11\%$):
- 1. Photon detector with excellent spatial, time & energy resolutions
- 2. Positron spectrometer with excellent energy & timing capabilities
- 3. Stable and well monitored & calibrated detector (multitude of calibration & monitoring tools)
- 4. High performance DAQ system (multi-GHz waveform digitization of nearly all 3k channels)

