

Instrumentation for Colliding Beam Physics - INSTR17

Budker Institute of Nuclear Physics

High-Granularity Timing Detector for the Phase-II upgrade of the ATLAS Calorimeter system

Evangelos – Leonidas Gkougkousis

ON BEHALF OF THE ATLAS LAR – HGTD GROUP

Novosibirsk – March 1st, 2017

Overview

Introduction	HL-HLC Conditions			
	• $\mu = 200$ pileup conditions			
	Calorimeter performances			
	Pileup efficiency			
Motivation	HGTD Motivation			
	 Time-Pileup rejection 			
	Important EW channels			
HGTD System	• The Detector			
	• Geometry			
	• Jet, electron and muons performances			
Sensor	• Sensors			
Development	 Technologies, LGADs 			
	• Design and testing			
	• Test Beam Results			
	Radiation Hardness			
ASJCs	• Electronics			
Conclusions	 Conclusions and Outlook 			
	Conclusions and Outlook			

•HL-HLC Conditions

HL-LHC Conditions

- ✓ Phase I: < 2.2x10³⁴ cm⁻²s⁻¹ (300 ID)
 ✓ Phase-II : 5 7.5x10³⁴ cm⁻²s⁻¹ (3000 f¹-⁻¹)
 ✓ Major Challenge:

- \checkmark No. of collisions per crossing from 23 to 200 at 150 ps in 50 mm space
- ✓ Extended tracking up to $|\eta| < 4.0$

ard

scatter jet

"Stochastic

pileup jet

QCD pileup

HL-HLC Conditions

Calorimeter and Pileup efficiency

- EM calorimeter noise increases by an order of magnitude
- Pileup rejection is impacted at high η
- Energy resolution in the EM calorimeter heavily degrades for the low P_T (> 20GeV) regions towards the end caps
- \checkmark Up to 20% reduction on the energy resolution for the interesting 20 - 50 GeV P_T region

HGTD Motivation

Time – Pileup Rejection

- High probability of vertices in close proximity
- \checkmark Time information helps pileup rejection
- ✓ Pileup distribution extremely peaked at forward $1.8 < |\eta| < 3.2$ were tracker not completely implemented
- ✓ Track confirmation rejection at 2% for central region but degrades towards end caps

HGTD Motivation

Important EW channels

- ✓ Potential of HGTD as a L (40MHz) Time trigger for the VBF 0channel
- ✓ Lower jet P_T thresholds and extend accessible phase space
- ✓ Largest potential in hadronic final state VBF channels (also offline), preferentially forward peaked:

 $H \rightarrow bb, H \rightarrow Inv., HH \rightarrow bbbb$

- Pre-shower option :
 - Improve forward electron /photon reconstruction
 - ➢ Interesting for search in $H → aa → \gamma \gamma j j$

Trigger	SD value	physics		
di-γ	25-25 GeV	di-photon		
di-τ	40-30 GeV	Η→ττ		
4-jet	75 GeV	H→bb, HH→4b		
$\mathbf{E}_{\mathbf{T}}^{\mathbf{miss}}$	200 GeV	H→Inv.		

INSTR17

1 / 3 / 2017

E. L. Gkougkousis

HGTD System

Performance

- 1TeV muons simulation
- 98.88% efficiency for 4 layers
- 0.044 MeV/muon at 150 µm
- 50% of inefficiency from zones
 - $Z \rightarrow ee sample at \mu = 200$
 - 45 GeV P_T e and γ
 - 6mm radius EM clusters
- 70 HGTD cells per cluster
- Dynamic range of 50psec/MIP
- $H(125GeV) \rightarrow Inv.$ sample with jet $P_T = 72 \text{GeV}$
- Expected peak time in distribution
- ~90% signal purity at $\Delta R < 0.1$

INSTR17

Muons

Electrons

Technology and requirements

Low Gain Avalanche Diodes (LGAD)

- ✓ Most promising technology
- ✓ Secondary implant introducing moderate gain
- ✓ HPK, CNM, FBK produced sensors

- Fast time resolution:
 - ✓ Maximize slope (large fast signals)
 - ✓ Correct time walk with CFD
 - ✓ Minimize noise
 - Thin sensors with integral gain

10

E. L. Gkougkousis

11

1 / 3 / 2017

E. L. Gkougkousis

INSTR17

- Max. ($\eta = 4$.2) after 3000 fb⁻¹ ~ 4x10¹⁵ n/cm²
- W increases the dose by a factor 3 for R > 30cm in HGTD, possible mitigation by 5mm moderator

- Thermal neutron irradiation single pad diodes
- Rise time within 10% between fluences
- Time resolution in the order of 40 ps for gain of 10 15

Electronics

ASIC prototype

Chip Layout with wire ASiC bump bonded to $2x^2$ bonds in the periphery array in multiple points

	Detector	1 mm pad	3 mm pad
	Power con.	800 µA	3.2 mA
	V _{in} (Q _{in} /C _d)	2.5 mV	0.625 mV
	Sim. V _{out}	21 mV	17.7 mV
	Noise	0.44 mV	0.66 mV
	S/N	48	27
Inner Layers	Jitter (at G = 10)	23 ps	40 ps
Large Radius	Jitter (at G = 20)	11.5 ps	20 ps

ATLAS LGAD Timing Integrated ReadOut Chip (ALTiRoC)

- TSMC 130nm CMOS Technology
- ➤ 3.4 x 3.4 mm total area
- ➢ 300µm substrate thickness
- Directly bonds to 2 x 2 arrays
- Four readout channels dedicated for 2 pf/channel, 10 pf/channel and 20 pf/channel sensors
- > Channel area 200 x 100 μm
- Integrated Preamplifiers, ToT and CFD
- Under fabrication, expected in April

Conclusions and Outlook

Sensors, ASIC, Integration and Radiation Hardness

So far....

Physics

- ✓ Very promising results for pileup rejection in the high η region where VBF and exotics will benefit
- ✓ High jet single purity for invisible searches, L0 trigger for VBF channel at 40MHz

Sensors

- ✓ 26 ps time resolution for single 1mm² diodes
- $\checkmark~95\%$ uniformity with low inefficiencies in the inter-pad regions
- ✓ Operations up to 2e15 at moderate gains with degradation of time resolution due to breakdown

Integration

- \checkmark Fixed and simulated geometry and vital space
- $\checkmark\,$ Flex and mechanics designs considered
- $\checkmark\,$ Tests with different detector sizes and electronics
- ✓ First ASIC prototype deigned and submitted

Conclusions and Outlook

Sensors, ASIC, Integration and Radiation Hardness *To do*...

Physics

- ✓ Investigate performance improvements in individual analysis channels at the context of HL-LHC
- \checkmark Integrate and produce fully simulated samples with final geometry

Sensors

- $\checkmark\,$ Scale from single pads and 2 x 2 arrays to 2cm x 2cm matrices
- \checkmark Improve radiation hardness for neutron irradiated, do proton- pion irradiation
- \checkmark Key players with design optimization (HPK, CNM, FBK) to improve inefficiencies

Integration

- \checkmark Final geometry and segmentation decisions with respect to occupancy and readout
- ✓ ASIC Test in upcoming test beams, optimization and scaling to full size matrices
- ✓ Services and flex design and simulation, final decisions about integration

Acknowledgements

The work at SCIPP was supported by the USA Department of Energy, Grants DE-FG02-13ER41983 and DE-FG02-04ER41286.

Part of this work has been financed by the European Union's Horizon 2020 Research and Innovation funding program, under Grant Agreement no. 654168 (AIDA-2020) and Grant Agreement no. 669529 (ERC UFSD669529), and by the Italian Ministero degli Affari Esteri and INFN Gruppo V.

This work was partially performed within the CERN RD50 collaboration.

Part of this work has been financed by the Spanish Ministry of Economy and Competitiveness through the Particle Physics National Program (FPA2015-69260-C3-3-R and FPA2014-55295-C3-2-R).