Status of installation and commissioning for the Belle II time-of-propagation counter

Maeda Yosuke (KMI, Nagoya Univ.) for the Belle II TOP group

2nd Mar, 2017 INSTR-17 @Novosibirsk

^{2&}lt;sup>nd</sup> Mar, 2017

new technique : Time-Of-Propagation

hew technique : Time-Of-Propagation

mirror

45 cm

quartz bar

- challenging specification
 roughness <6 Å (RMS)
 - **□** parallelism <4 arcsec =24 μm/1.25 m
 - flatness < 6.3 μm
 chamfers < 0.2 mm
 - •
- two 1.25-m-long bars are glued as well as a prism and a mirror
 results of quality assessment
 transmittance >98.5%/m reflectance >99.9%

Micro-Channel-Plate (MCP) PMT

installation

module production late 2014 – Apr 2016

- □ installation : Feb May, 2016
 - sag during the period was <0.5 mm, within requirement

monitored sag

9/19

installation

■ module production late 2014 – Apr 2016

installation completed at 11th May, 2016

after strong back removal

performance study after installation

items to be checked healthiness of each component calibration to achieve full performance operation in the 1.5-T magnetic field Calibration Optical available tools **fibers** Pogo-pins cookies CCD camera Quartz Prism directly check quartz Front-end -PMT optical coupling modules LEDs Iaser calibration system CCD cameras picosecond laser illuminate all PMTs PMT modules cosmic ray data

2nd Mar, 2017

Belle II

10/19

test

pulse

0.04817

0.2228 522.9 / 152 3.22e-42 129.8 ± 3.0 0.001005 ± 0.001937

SampleTime11 Iteration 98

22

timina

1G= one Gaussian

No background

200

21.5

laser hit

Entries

Constant

21.86 ± 0.00

after calibration

 $\sigma_{\text{electronics}}$ = 30 ps

pix[1] pmt 1- 1 irsx[bs0,ca0,as1,ch0

waveform time base calibration calibrate non-uniform sample interval.

response to laser $\sigma \sim 120$ ps with above calib.

understanding of multiple

2nd Mar, 2017

Belle II

"PMT rotation" problem

"PMT rotation" problem

BS

.5

■ slight tilt of the magnetic field → strong magnetic force to PMTs (side tube of the PMT is magnetic) B (1.5]

direct inspection with CCD camera

no entrie as no HV

PMT modules

(4 PMTs)

fix the problem

inserting spacer to prevent the rotation no rotation of PMT modules

laser hit map ratio (1.5 T/O T)

2nd Mar, 2017

Belle II

14/19

•

response to cosmic ray

install trigger counter
 No tracking
 data taking with and without magnetic-field
 confirm the counter
 measure is valid

nHit per cosmic ray trach

current status

after fixing the PMT problem, inner tracking detector (CDC, talk by N. Taniguchi) As well as backward end-cap EM calorimeter (ECL) was installed

 preparation of data taking with other detectors is on-going
 more detailed analysis is possible with track information

summary & prospects

- The Belle II Time-Of-Propagation (TOP) counter was successfully installed last May, and commissioning is on-going
- We faced PMT rotation problem in the magnetic field, it is immediately fixed.
- Cosmic ray data (without tracking) showed reasonable data-MC agreement. Still more understanding of hit efficiency is necessary.
- More detailed performance evaluation will be possible using coming "global" cosmic ray data with track information.

backup slides

expected performance

■ e.g. ~10% (Belle) \rightarrow ~3% (Belle II) π mis-ID at 86% efficiency of 1-2 GeV/c K for $D^{*+} \rightarrow$ $D^0\pi^+, D^0 \rightarrow K^-\pi^+$

Belle PID (ACC+TOF+dE/dx)

expected performance

PID impact on physics analysis

200

100

Belle experimental data (657 million BBbar sample)

 ΔE : energy difference between reconstructed B⁰ and beam

with Belle II PID (**TOP+ARICH**)

-0.2

-0.4

0.2

0.4

ΔE

0

T. Hayakawa (2015)

quartz specification

- Two 1250 x 450 x 20 mm³ bars per TOP module glued together to make a 2500 mm long bar
 - Material: Corning 7980
 - 30 bars polished by Zygo and 2 (+2 spares) by AOS/Okamoto

K. Matsuoka (@KMI2017)

24/19

module assembly

K. Suzuki @RICH2016)

Optics: alignment, gluing, curing and aging (~2 weeks).

Enclosure: gluing CCDs and LEDs, integrating fiber mounts. QBB: strong back flattening, button & enclosure gluing.

Put on a cart. PMT and frontend integration, performance check. QBB assembly and gas sealing.

Move optics to QBB u<mark>sing_{le II} the "lifting jig".</mark> 2nd Mar, 2017

Belle II

26/19

From the assembly site to the installation site.

■Using a transportation pallet, crane and truck (~1.5 km @ ~5 km/h).

Gently done for all modules.

Temp. (T), Humidity (H) and Acceleration (G) in the M01 transportation.

K. Suzuki (@RICH2016) 2nd Mar, 2017

MCP-PMT modules

Front board (signal/HV routing, HV filtering)

RTV to fix MCP-PMTs to front boards

Vacuum chuck

Optically matched silicon cast in place

Pacific Northwest NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

Two MCP-PMT modules mounted to prism face

PEEK parts precisely locate wavelength filter relative to front board

Removable optical coupling is made using a soft cast silicone cookie with a drop of optical oil to make a "bubble free" contact

PNNL-SA-120657

2nd Mar, 2017

J. Fast (@RICH2016)

September 5, 2016

etime extension of the MCP-PMT

Outgassing from the MCP deteriorates the photocathode and the QE drops as a function of the integrated output charge.

K. Matsuoka (@KMI2017)

deflection measurement

Act. #	Action
1	Before the slider approach.
2	Sliders joined.
3	Lifted up.
4	Set the weights.
5	Rotated to the top position.
6	Removed OP spacers.
7	Rotated to the slot position.
8	Moved to a lower position.
9	Slid in the barrel.
10	Tightened the shoulder bolts.
11	Tightened the flange bolts.
12	Removed the weights.
13	Removed the slider bolts.
14	Removed the upper L-fixtures.
15	Removed the lower L-fixtures.

シーション (タイミング分布)

■トリガーカウンターの場所を変えながら応 答を確認

□想定通りの直接光/反射光の時間差

宇宙線データ (ヒット数)

□1トリガーあたりのhit数:~20 □およそシミュレーションの予想と一致

Belle II検出器

筑波実験棟への輸送後のデータ

エレキハット

エレキハット前でインス トール前に再度測定を 行う

■輸送時に大きな問題が ないことを確認

cosmic ray model

correlation between angular and momentum distribution (from hep-ph/ 0604145)

$$I(p_{\mu}, \theta) = \cos^{3}(\theta)I_{V}(\zeta)$$

$$\zeta = p_{\mu}\cos(\theta)$$

$$\Box I_{V} : \text{spectrum}$$

for $\theta = 0$
$$\Box \text{BESS results}$$

were used

highlights of analysis (i)

- event selection using TOP hit itself is possible
 - and no hits in all the others
 - clear peak structure

highlights of analysis (ii)

reduction of artifacts waveform analysis <u>new cut at the window boundary</u>

7th Feb, 2017

highlights of analysis (ii)

reduction of artifacts
 waveform analysis
 new cut at the window-2
 baseline shift

fit ADC count dist. for each window (take very long time to process...)

□<u>mis-configured asics</u>

discard asic data with too many hits

7th Feb, 2017

estimation of BG components

41 / 19

BG contribution

Belle II

issues – trig. rate in data/MC

reasonable agreement in 0-T case not reproduced in 1.5-T case

wrong model? bad trig. counter eff?

eff. vs HV and thre. (0 T)

$\Box \Delta V = [-80, +100]$

7th Feb, 2017

45 / 19

eff. vs HV and thre. (1.5 T)

$\Box \Delta V = [-100, 0]$

46 / 19

7th Feb, 2017

test in Hawaii

Laser timing: laser_pixel3_0_gain4_HV3201_18may2015

21th Mar, 2016

laser system test bench

Setup in Padova - I

Quartz prism equal to those installed in KEK (rejected 'cause of production damage on a corner)

A dedicated support for the fibers is being produced

current precision on fiber position $\sim\,$ mm

A. Mordá (INFN Padova)

Report on laser calibration system in Padova

7th February 2017 3 / 19

Fit results - pos.0 \cup pos.1 - x-axis range [8,10] ns

<section-header>

pos. 0 & 1 components no more distinguishable without fit

A. Mordá (INFN Padova)

Report on laser calibration system in Padova

7th February 2017 10 / 19

A. Morda (@26th B2GM)