

High Energy Accelerator Research Organization – KEK, Japan

Aerogel RICH counter for the Belle II

forward endcap PID

Luka Santelj, KEK

On behalf of the Belle II ARICH group

Content:

- Belle II experiment
- Aerogel RICH
- HAPD
- construction status
- cosmic ray test
- summary

Belle II & SuperKEKB

New facility on the intensity frontier:

Virtual production of new particles to probe energies beyond the energy frontier (prime examples: GIM, M_c , 3 gen., M_t)

Successor of the very successful KEKB/Belle @ KEK, Tsukuba, Japan.

KEK / Belle

In operation: 1999-2010 Accumulated data: **1 ab**⁻¹ Peak luminosity: **2 x 10**³⁴ cm⁻² s⁻¹

High precision confirmation of the SM flavor structure (KM mechanism is the main source of CPV,...).

KEKSuperB / Belle II

Start: 2018 Accumulated data: **50 ab**⁻¹ Luminosity: **8 x 10**³⁵ cm⁻² s⁻¹ (Belle x 40)

Are there new CPV phases? Are there right handed currents from NP? Does nature have multiple Higgs bosons? ...

The Belle II detector

Aerogel RICH (ARICH)

Good particle identification (mainly π / K separation) is a key issue for Belle II:

- background reduction (e.g. $B
 ightarrow
 ho \ \gamma \ {
 m vs.} \ B
 ightarrow K^* \gamma$)
- efficient flavor tagging (determination of B meson flavor)

Goal:

 $4\sigma~\pi~/K$ separation, at 0.5 - 3.5 GeV

In the forward endcap \rightarrow **Aerogel RICH**.

Constraints:

- in 1.5 T magnetic field.
- limited available space ~28 cm.
- radiation hardness (n, γ) .

Design of ARICH

420 HAPD modules arranged in 7 rings. (inner radius 56 cm, outer radius 114 cm)

2 x 124 aerogel tiles, wedge shape, 2cm each layer, 4 types (radius dependent, ~17x17 cm)

Planar mirrors on the outer edge, to prevent photon loss.

110 cm

5

Radiator – Silica Aerogel

T.lijima, S.Korpar et al. NIMA548 (2005) 383 Two aerogel layers in focusing configuration:

 $n_1 = 1.045, n_2 = 1.055$

Overlapping rings from 1st and 2nd layer!

Increasing number of photons with no resolution degradation (due to unknown photon emission point).

$$\sigma_{gel} = \frac{d \sin \theta_C \cos \theta_C}{l \sqrt{12}} \frac{1}{\sqrt{N_{p.e.}}} \qquad N_{p.e.} \propto d$$

Aerogel with high transparency is required ($\lambda_t > 30 \ \mathrm{mm}$)

Minimize photon loss on tile edges \rightarrow large tiles (~ 17 x 17 cm)

Photon detector – HAPD

HAPD – Hybrid Avalanche Photo-Detector

- Developed in collaboration with Hamamatsu photonics
- Basic requirements: 1.5 T n,γ tolerance ($10^{12} n/{
 m cm}^2$)

- large coverage (3.5 m²)

Proof of principle

Mass production of HAPDs

- Mass production finished end of 2016. .
- Extensive QA tests, to measure QE, dead channels, channels gain, APD leakage current
- 90% of delivered HAPDs satisfy required specs. (high APD leakage current, low QE, etc)
- properties in database, available for reconstruction, etc.
- 420+spares HAPD modules (HAPD+FEB) ready for installation.

of sample / 2%

HAPD performance in magnetic field

• In first tests of HAPD prototypes in magnetic field only beneficial effects were observed:

- In later tests of larger number of HAPDs from mass production it was observed that in some samples abnormally large signals (pulses) are generated when operating in magnetic field
 - all APD channels fired simultaneously
 - for most HAPDs only during the HV ramp-up.
 - for some samples (~20%) pulses persist
 - at rates from 0 to few/s

Effect on HAPD performance

- After each pulse a short dead time period (~0.1s) of readout electronics is induced. \rightarrow for most problematic samples, up to 10% overall dead time.
- Occasional damage to readout electronics → largely solved by adding ESD protection diodes to FEB (in front of ASIC inputs)
- So far no effect on HAPD itself is observed.

Getter re-activation

- Getter is a small plate of reactive material in a vacuum tube, activated at the end of HAPD production to improve the vacuum quality.
- Re-doing activation of getter in HAPD tube drastically reduces the rate of large pulses.
- Getter re-activation was done by Hamamatsu for all samples with initially >2% dead time (~20%)

 \rightarrow all recovered! (stable for 5 months)

dead time fraction

Surface flashover hypothesis

- Initiated by field electrons emitted from cathode under certain conditions an electron avalanche can form, leading to desorption of gas and eventually to breakdown.
- Light emitted in the process spreads over photocathode
 → large signals over all HAPD
- Breakdown voltage known to depend on magnetic field.
- CMS HCAL uses HPDs, and observe similar anomalously large signals when operating in ~1T.

Puzzling dependency on APD bias voltage

L.S. et al., Nucl. Instrum. Meth. A845 (2017) 459 - 462

Readout electronics

- in total 60.000 channels.
- limited space of 5 cm behind array of HAPDs.
- ASIC SA03 (36 ch/chip \rightarrow 4 ASICS / HAPD).
- Variable gain (3.1-12.5 V/pC) and shaping time (100-200 ns)
 - \rightarrow optimization for increasing noise levels (neutron radiation)
- mass production completed.

13

Installation of components

Aerogel tiles

- Tiles separated by 0.5 mm aluminum walls and supported by 1 mm aluminum plate
- Containers wrapped in a black sheet.
- Glass fiber strings to fix tiles to containers
- Installation completed.

Installation of components

HAPDs & other

- 2 sectors of HAPDs installed (140).
- Test installation of polyethylene neutron shield on the inner side.
- Test installation of mirror plates.
- 40 HAPDs connected to DAQ for tests, 16 fully operational (HV+bias+DAQ) used for cosmic ray test.

Cosmic ray test

- Using 16 HAPDs and a single aerogel tile (2 layers)
- To confirm HAPD functionality on the structure, with final power supply system and cabling.
- To test DAQ system, data processing software, and develop control software.
- Test of LED monitoring system.
- First cosmic Cherenkov rings in ARICH were observed in August 2016.

Summary

- In the Belle2 spectrometer RICH with 2 layer aerogel radiator will be used for PID in the forward endcap.
- As a photon detector HAPD (420) will be used.
- For some HAPDs we observe problematic behavior in magnetic field
 → successfully mitigated by getter re-activation (improving vacuum quality).
- The mass production of all detector components was completed by the end of 2016 and QA tests were finished.
- Installation of components on structure is ongoing, to be finished in June.
- Cosmic ray test is also ongoing, using part of ARICH and first Cherenkov rings were observed.
- From simulation studies and beamtests we expect excellent performance of ARICH, >95% kaon id. efficiency at low pion fake rates <2%!
- Finally, after full system tests, ARICH is to be installed in Belle2 in September.

Summary

- In the Belle2 spectrometer RICH with 2 layer aerogel radiator will be used for PID in the forward endcap.
- As a photon detector HAPD (420) will be used.
- For some HAPDs we observe problematic behavior in magnetic field
 → successfully mitigated by getter re-activation (improving vacuum quality).
- The mass production of all detector components was completed by the end of 2016 and QA tests were finished.
- Installation of components on structure is ongoing, to be finished in June.

Thank you for your attention!

Focusing configuration in beamtest

Flashover simulation

• We developed a simple simulation to see if electron avalanche can form on HAPD sidewalls.

Avalanche development depends on middle ring potential:

Radiation hardness

- Severe beam-related background is expected in the Belle2 experimental environment.
- Several HAPD irradiation tests performed:
 - In the nuclear reactor \rightarrow neutrons
 - Irradiation with Co-60 \rightarrow gamma-rays
- Estimates for 10 years of Belle2 operation :
 - neutrons: up to ~ $4x10^{11}$ n/cm² (1MeV eq.) \rightarrow $4x10^{10}$ n/cm²/year
- gammas: up to 1000 Gy (~ 100 Gy for most of HAPDs) \rightarrow 100 Gy/year

Simulation of the background \rightarrow shielding of the beam pipe with tungsten

