

A new Scintillating Fibre Tracker for LHCb experiment

Alexander Malinin, NRC Kurchatov Institute

on behalf of the LHCb-SciFi-Collaboration

Instrumentation for Colliding Beam Physics BINP, Novosibirsk, 28th February 2017

LHCb Detector Upgrade

- Goal: 50 fb⁻¹ integrated luminosity
 - increase the statistics significantly (rare decays)
- limited by 1 MHz hardware trigger, and
- limited by detector occupancy
- Major upgrade during LS2 in 2020 (see talk by Mark Williams)
- new VELO
- replace TT with new silicon micro-strip detector
- replace IT (silicon) & OT (straws) with SciFi tracker (scintillating fibres, SiPM array sensors), to achieve
- 40 MHz detector readout \rightarrow full software trigger!
- RICH: new photon detectors
- Calorimeter: remove SPD/PS, new readout (see talk by Yury Guz)
- Muon System: remove M1, new readout

28-02-2017

LHCb SciFi Tracker

• Layout :

- 12 layers arranged in 3 tracking stations
- each station with 4 planes of scintillating fibre modules (two planes tilted by ±5° stereo angle)
- T1+T2: 10 modules per layer, T3: 12 modules
- in total: 128 modules, 1024 fibre mats + spares
- 340 m² sensitive area
- readout boxes with light injection system for calibration
- Requirements :
 - single hit efficiency ~99%
 - material budget per layer ~1% X₀
 - single point resolution < 100 µm in bending plane
 - 40 MHz readout
 - radiation hardness (up to 35 kGy for fibres near beam pipe)

28-02-2017

SciFi Principle

- Staggered layers of 250 µm thin, double-clad scintillating fibres, to form a 6-layered hexagonal packed mat
- Read out by the SiPM arrays covering one fibre mat end face
- Signal is shared between the adjacent SiPM array channels allowing for a resolution better than pitch / $\sqrt{12}$
- Mirror opposite to readout end increases the light yield by ≥ 65% for the hits close to the mirror

28-02-2017

28-02-2017

Fibre Mats

- 8 km of fibre per mat (242.4 cm long, 13.65 cm wide mat)
- Kapton lamination foil for mechanical stability and light-tightness
- Detailed QA at production sites: geometry and light yield
- Glue alignment pins inherit precision of the wheel to mats

Threaded winding wheel

28-02-2017

Fibre Modules

28-02-2017

Radiation Hardness

- Light yield decreases with radiation dose (35 kGy near beam pipe over full lifetime, 60 Gy at SiPMs)
- Expected signal reduction of 40% near the beam pipe

28-02-2017

SiPM arrays

- 128 (2x64) channel SiPM arrays
- 250 µm channel pitch (= fibre diameter)
- high photon detection efficiency ~45%
- low crosstalk probability < 10%
- neutron fluence $1 \cdot 10^{12} n_{eq}^{2}/cm^{2}$ (1 MeV)
 - \rightarrow cooling needed to reduce noise
- small distance between fibres and silicon

Hamamatsu

28-02-2017

Inside the FE cold box

- SiPM dark count rate increases with radiation dose (60 Gy at the end of LHC Run 3)
- DCR reduction by factor 2 for every ~10°C cooling
- Single phase Novek (649) cooling for SiPM arrays down to -40°C

28-02-2017

Master board: transfers the data and distribute the signals,

fast control, timing, clock, light injection pulse, and slow control.

SciFi mat SciFi mat 2 x SiPM 2 x SiPM 2 x SiPM 2 x SiPM array array array array Pacific FPGA GBTx DC/DC + Optical links

28-02-2017

۲

Test Beam Results

near the mirror

SciFi mass production centres

28-02-2017

SciFi production centre at NRC KI

28-02-2017

SciFi production centre at NRC KI

28-02-2017

- Large area (340 m²) high resolution (80 µm) scintillating fibre tracker read out with 128 channel SiPM arrays.
- 2.5 m long fibre mats with \geq 16 p.e. light yield and 99% efficiency!
- Production has started in 2016, ~15% of mats are already produced.
- Installation in 2019, ready for LHC run 3 starting in 2021.
- Close collaboration of 18 institutes in 9 countries.

28-02-2017

Thank you!

28-02-2017

Backup slides

28-02-2017

History of the Scintillating Fibre Trackers with SiPM readout

28-02-2017