

Monitoring and Correcting for Response Changes in the CMS Lead-tungstate Electromagnetic Calorimeter in LHC Run2

Tatyana Dimova (Novosibirsk State University and Budker Institute of Nuclear Physics) On behalf of the CMS Collaboration

Lead tungstate crystals (PbW0₄)

Need precise light monitoring system

Low light yield (1.3% NaI) Need photodetectors with gain in magnetic field

Reasonable radiation resistance to very high doses

425nm

Fast light emission

Emission peak

~80% in 25 ns

Electromagnetic calorimeter

Barrel

CMS

36 Supermodules (18 per half barrel) 61200 crystals Total crystal mass 67.4t $|\eta| < 1.48, ~26X_0$ $\Delta \eta \ge \Delta \phi = 0.0174 \ge 0.0174$

Endcaps 4 Dees (2 per endcap) 14648 crystals Total crystal mass 22.9t 1.48< $|\eta| < 3$, ~25X₀ $\Delta \eta \ge \Delta \phi = 0.0175^2 \leftrightarrow 0.05^2$

Endcap Preshower Pb (2X_o,1X_o) / Si 4 Dees (2 per endcap) 4300 Si strips 1.8mm x 63mm 1.65< |η| < 2.6

Study of radiation damage in PbW0₄

Radiation dose at the EM shower max for $L=10^{34}$ cm⁻²s⁻¹:

- 0.3Gy/h in EB
- 6.5 Gy/h at η=2.6

Evolution of transmission due to irradiation

Ionizing radiation damage:

- It recovers at room temperature **Hadron damage:**
- No recovery at room temperature
- Shift of transmission band edge
- Will dominate at HL-LHC

On-Detector Monitoring System

- 3 lasers are used: 447 nm (main laser), green and infra-red:
 - Laser light injection in each crystal every ~ 40 minutes
 - Very stable PN-diodes used as reference system
- ECAL signals compared event by event to PN reference
 5

Evolution of laser data (2011-2016)

Relative response to laser light averaged over all crystals in bins of pseudorapidity (η), for the 2011, 2012, 2015 and 2016 data taking periods, with magnetic field at 3.8 T:

- The response change is up to 10% in the barrel and it reaches up to 50% at η ~
 2.5. The response change is up to 90% in the region closest to the beam pipe.
- The recovery of the crystal response during the Long-Shutdown-1 period is visible, where the response was not fully recovered, particularly in the region closest to the beam pipe.
- These measurements are used to correct the physics data.

Laser Monitoring Dataflow and L1&HLT

Data Flow:

- Laser monitoring data is taken during the LHC "gap" events, 3µs every 90µs
- Gap events are arriving at the Filter Farm, and then analyzed in a PC farm to extract APD/PN values
- The laser APD/PN ratios and other necessary information stored in the offline database

Corrections ready for reconstruction in less than 48 h!

Using transparencies for L1 & HLT:

- Once the data of previous week is in database
 - Averaging over week of transparencies
 - Producing of trigger parameters for L1 and HLT
 - Validation with trigger primitives and energy reconstruction
 - Uploading of L1&HLT trigger parameters
- This procedure is performing once a week
- Because of relatively quick changes of transparencies in Endcap it will be replaced by a quicker and more frequent procedure.

Using Laser Data for L1&HLT

Fractional difference in transverse energy between offline electron and corresponding online L1 candidate

Trigger efficiency versus electron transverse energy for HLT candidate

Laser corrections in π^0 invariant mass

- The plot shows the data with (green points) and without (red points) light monitoring (LM) corrections applied.
- The energy scale is measured by fitting the invariant mass distribution of two photons in the mass range of the π⁰ meson.
- The right-hand panel shows the projected relative energy scales

Laser corrections and E/p ratio for electrons

The ratio of electron energy E, measured in the ECAL Barrel, to the electron momentum p, measured in the tracker:

- the history plots are shown before (red points) and after (green points) corrections to ECAL crystal response variations due to transparency loss are applied;
- the E/p distribution for each point is fitted to a template E/p distribution measured from data
- A stable energy scale is achieved throughout 2015 run after applying laser corrections: ECAL Barrel: average signal loss ~6%, RMS stability after corrections 0.15%

Conclusions

- The CMS electromagnetic calorimeter has efficiently operated during LHC Run I and Run II.
- A multiple wavelength laser monitoring system was used to control the changes in transparency of each crystal with high precision
- This system permitted to have stable calorimeter parameters under LHC radiation conditions
- The excellent ECAL performance was crucial for the Higgs boson discovery made by CMS and remains very important for precision measurements and for searches of new physics, as well

Backup slides

Detector layout

Photodetectors

Barrel: Avalanche photo-diodes (APD, Hamamatsu) Two 5x5 mm² APDs/crystal, ~ 4.5 p.e./MeV Gain 50 QE ~ 75% at 420 nm Temperature dependence $1/G \Delta G/\Delta T = -2.4\%/C$ High-Voltage dependence $1/G \Delta G/\Delta V = 3.1\%/V$ Need to stabilize HV at 30 mV Measured HV fluctuation: ~30 mV

Endcaps: Vacuum photo-triodes (VPT, Research Institute "Electron", Russia) More radiation resistant than Si diodes UV glass window Active area ~ 280 mm²/crystal, ~ 4.5 p.e./MeV Gain 8 -10 (B=4T) Q.E. ~ 20% at 420 nm Gain spread among VPTs ~ 25% Need intercalibration

Radiation damage in PbW0₄

Scintillation (S/S_0) vs laser light (R/R_0)

The changes in the crystal transparency due to irradiation impact on the signals from an electromagnetic shower in different way than from laser pulse.

Simulation of changes in EE crystal response

CMS ECAL **10/fb** 10^{-1} Simulation 50 GeV e-10 fb⁻¹, 5E+33 cm⁻²s⁻¹ 10⁻² 100 fb⁻¹, 1E+34 cm⁻²s⁻¹ 500 fb⁻¹, 2E+34 cm⁻²s⁻¹ 1000 fb⁻¹, 5E+34 cm⁻²s⁻¹ 2000 fb⁻¹, 5E+34 cm⁻²s⁻¹ 3000 fb⁻¹, 5E+34 cm⁻²s⁻¹ **3000/fb** 10^{-3} 1.5 2 2.5 3 η

With large transparency losses, energy resolution will degrade :

- photo statistics reduced
- relative noise increased
- crystal nonuniformity

A new machine, for high luminosity, to measure the H couplings, H rare decays, HH, Vector boson scattering, other searches and difficult SUSY benchmarks, measure properties of other particles eventually discovered in Phase1.