

A Simulation Study of E-driven ILC Positron Source

Masao KURIKI (Hiroshima University)

Introduction

- The design of the ILC positron source based on off-the-shelf components has been established.
- Further optimization was made to improve the performance and optimize the cost-effective system by,
 - Small beam size on target for better yield. (3.5 2.0 mm rms)
 - Lower drive beam energy for less cost. (4.8 3.0 GeV)
 - Consider only the nominal parameter.
- Booster configuration (lattice) is modified to make the consistency.

E-driven ILC Positron Source

- · 20 of 0.48us pulses are handled with NC linacs operated in 300Hz.
- 100 of 300 pulses are actually fired.

Electron Driver

- 3.0 GeV Electron beam with 2.0 mm RMS beam size at the target.
- 2.4 nC bunch charge is giving 0.39 A beam loading.
- S-band Photo-cathode RF gun for the beam generation.
- 80 MW klystron-modulator drives 2 structures.
- The effective input power for each tube is 36 MW. 50 MV/tube.

- 60 + 4 (spare) of 3m S-band TW structures for the acceleration. The energy is 3.2 GeV.
- The lattice design was based on ATF linac, 4Q + 2RF(S) up to 600 MeV, 4Q+4RF(S) for other.

Lattice	# of cell	Cell length(m)	Section length(m)
4Q+2S	6	8.0	48.0
4Q+4S	13	14.4	172.8

• The total length is 235.2 + 20 m (RF gun + matching section).

Positron Capture Linac

- 36 L-band SW structures designed by J. Wang (SLAC) for the undulator capture section is employed.
- Two structures are driven by one 50 MW klystron.
- Surrounded by 0.5 T solenoid f eld.

Structure Type	Simple π Mode
Cell Number	11
Aperture 2a	60 mm
Q	29700
Shunt impedance r	34.3 MΩ/m
E ₀ (8.6 MW input)	15.2 MV/m

Beam Loading in SW Linac

Single Cell Model : Simple, but not realistic

The field in SW accelerator

$$V(t) = \frac{2\sqrt{\beta P_0 r L}}{1+\beta} \left| 1 - e^{-\frac{t}{T_0}} \right| - \frac{r I L}{1+\beta} \left| 1 - e^{-\frac{t-t_b}{T_0}} \right| \qquad T_0 = \frac{2Q}{\omega(1+\beta)}$$

RF Beam Loading

• The voltage becomes constant if

$$t_{b} = -T_{0} \ln \left| \frac{I}{2} \sqrt{\frac{rL}{\beta P_{0}}} \right|$$
$$V_{0} = \frac{2\sqrt{\beta P_{0} r L}}{1 + \beta} \left| 1 - \frac{I}{2} \sqrt{\frac{rL}{\beta P_{0}}} \right|$$

24 August 2017

Multi-Cell Model : More realistic

Time differential of the energy of the center cell,

24 August 2017

Time differential of the voltage

$$\frac{dV_0}{dt} = -\left[\frac{(1+N\beta)\omega}{2Q} + k\omega\right]V_0 + k\omega V_1 + \frac{\omega\beta}{Q}V_{in} - \frac{\omega RI}{2Q}.$$

For the intermediate cells,

$$\frac{dV_1}{dt} = k\omega V_0 - \left(\frac{\omega}{Q} + 2k\omega\right)V_1 + k\omega V_2 - \frac{\omega RI}{Q}.$$

For the end cells,

$$\frac{dV_5}{dt} = k\omega V_4 - \left(\frac{\omega}{Q} + k\omega\right) V_5 - \frac{\omega RI}{Q}.$$

24 August 2017

 $dt\mathbf{V}$

11 linear simultaneous differential equations

24 August 2017

 \boldsymbol{A} can be diagonalized with a orthgonal matrix \boldsymbol{R} as

$$\mathbf{R}^{\mathrm{T}}\mathbf{A}\mathbf{R} = \mathbf{B} = \begin{pmatrix} \lambda_{-5} & & & \\ & \ddots & 0 & \\ & & \lambda_{0} & \\ & 0 & & \ddots \\ & & & & \lambda_{5} \end{pmatrix}$$

$$\frac{dt\mathbf{R}^{\mathbf{T}}\mathbf{V}}{dt} = \mathbf{R}^{\mathbf{T}}\mathbf{A}\mathbf{R}\mathbf{R}^{\mathbf{T}}\mathbf{V} + \mathbf{R}^{\mathbf{T}}\mathbf{C}.$$

$$\frac{dt\mathbf{V}'}{dt} = \mathbf{B}\mathbf{V}' + \mathbf{C}',$$

Because B is diagonal, the equations for V' are 11 independent linear differential equations,

$$\frac{dV_i'}{dt} = \lambda_i V_i' + C_i',$$

24 August 2017

The solution for V' is

$$V_i'(t) = \tau_i C_i' \left(1 - e^{-\frac{t}{\tau_i}} \right),$$

The solution for V is expressed as a linear sum of the solution for V' $% \mathcal{V}^{\prime}$

$$\mathbf{V} = \mathbf{R}\mathbf{V}'.$$
$$V_i(t) = \sum_{j=0}^5 R_{ij}\tau_j C'_j (1 - e^{-\frac{t}{\tau_j}}).$$

- L=1.27 m (11 cells, L-band SW)
- R=34e+6 Ohm/m
- P₀=22.5 MW (50MW at klystron, 5MW wave guide loss).
- 10.36 MV/tube with beta=6.0.

24 August 2017

RF Mode and Beam Loading Mode

- The total acceleration voltage is given as sum of the RF mode and the Beam-loading mode.
- They are not identical, but the dominant mode is common (tau=1.22 us).
- The RF mode has the second dominant mode, but nothing for BL. This gives the imperfection on the BL compensation, but the effect is not large.

RF mode

au	0.020	0.006	0.011	0.068	1.22
cell -5	0.063	-0.003	-0.026	-0.232	2.078
cell -4	-0.013	0.010	0.034	-0.149	2.043
cell -3	-0.074	-0.016	0.015	-0.013	1.975
cell -2	-0.045	0.021	-0.039	0.127	1.873
cell -1	0.038	-0.026	-0.002	0.222	1.740
cell 0	0.075	0.030	0.040	0.238	1.578
cell 1	0.038	-0.026	-0.002	0.222	1.740
cell 2	-0.045	0.021	-0.039	0.127	1.873
cell 3	-0.074	-0.016	0.015	-0.013	1.975
cell 4	-0.013	0.010	0.034	-0.149	2.043
cell 5	0.063	-0.003	-0.026	-0.232	2.078

BL mod	le				
au	0.020	0.006	0.011	0.068	1.22
cell 0	-0.000	0.000	0.000	0.004	-0.710
cell 1	0.000	-0.000	-0.000	0.002	-0.698
cell 2	-0.000	0.000	-0.000	0.000	-0.674
cell 3	0.000	-0.000	0.000	-0.002	-0.639
cell 4	-0.000	0.000	0.000	-0.004	-0.594
cell 5	-0.000	-0.000	-0.000	-0.004	-0.539
cell 6	-0.000	0.000	0.000	-0.004	-0.594
cell 7	0.00	-0.000	0.000	-0.002	-0.639
cell 8	0.000	0.000	-0.000	0.000	-0.674
cell 9	0.000	-0.000	-0.000	0.002	-0.698
cell 10	-0.000	0.000	0.000	0.004	-0.710

Beam Loading Compensation

No big difference on the no-load voltage, but 30 % less on the heavyly loaded voltage,

24 August 2017

Capture Linac exit

800

700

600

500

300

200

100

E GPI

57.5

57.6

57.7

57.8

S

_{ර 400}

Capture Simulation

- 1000 electrons on target by GEANT 4.
- The positron is decelerated and bunched at • the acceleration phase by phase-slipping.
- Positrons with a large z (longitudinal position) are not captured by the final acceptance. This is not the case for δ .

Booster

- A first half is implemented by L-band acc. and the last half is by S-band.
- 50MW L-band Klystron drives two L-band acc. (2a = 34 mm).
- 80MW S-band Klystron drives two S-band acc. (2a = 20 mm).
- The gradient at 0.78 A (4.8nC/bunch) beam loading is assumed.
- The beam loading compensation and its accuracy determine the accelerator gradient.

Beam-loading in TW Linac

- Transient beam-loading is compensated by Amplitude Modulation.
- Acceleration voltage by a f ht RF,

$$V(t) = E_0 L + \frac{r_0 L I_0}{2(1 - e^{-2\tau})} \left[\frac{\omega}{Q} e^{-2\tau} (t - t_f) - 1 + e^{2\tau - \frac{\omega}{Q}t} \right].$$

Beam Loading Compensation with AM

Laplace transformation of TW accelerator voltage V(s) is

$$V(s) = \frac{\omega L}{Q(1 - e^{-2\tau})} \frac{1}{s + \omega/Q} E(s) \left(1 - e^{-(s + \omega/Q)t_f}\right) - \frac{\omega r_0 L}{2Q(1 - e^{-2\tau})} \frac{I_0}{s^2} e^{-st_f} \left[1 - e^{-\frac{\omega}{Q}t_f} - \frac{\omega(1 - e^{-st_f - 2\tau})}{Q(s + \omega/Q)}\right],$$

where E(s) is the Laplace transformation of applied voltage (power). E(s) is determined to cancel s (t) dependence of V(s or t).

$$V(t) = E_0 L + \frac{LE_1}{1 - e^{-2\tau}} \left(1 - e^{-\frac{\omega}{Q}(t - t_f)} \right) - \frac{r_0 LI_0}{2(1 - e^{-2\tau})} \left[-\frac{\omega}{Q} e^{-2\tau} (t - t_f) + 1 - e^{-\frac{\omega}{Q}(t - t_f)} \right]$$

Saw Modulation

$$E(t) = E_0 U(t) + E_{1U}(t - t_f) + \frac{E_2}{t_f}(t - t_f) U(t - t_f)$$

$$E(s) = \frac{E_0}{s} + \frac{E_1}{s} e^{-st_f} + \frac{E_2}{t_f s^2} e^{-st_f}$$

micro sec

Actual Compensation (Trade off)

- Saw modulation is ideal, but it requires a high peak power.
- Step modulation is a replacement, but it has an imperfection (energy spread).
- If $t_p \ll t_f$, an optimization for P_0 gives smaller energy spread.

LINEAR COLLIDER COLLABORATION

2m L-band TW structure (Positron Booster)

- 2m L-band (1298 MHz) designed for KEKB injector.
- Saw modulation:22.5 MW input with 0.78 A BL gives 14.41 MV/tube (2m)
- The energy spread is zero (ideal), but the voltage is very limited.

Parameter	Number	unit
Frequency	1298	MHz
Shunt Impedance	47.2	$M\Omega/m$
Aperture (2a)	39.4 - 35.0	mm
Group velocity	0.61 - 0.39	% of c
Filling time	1.32	$\mu { m s}$
Attenuation	0.261	
Q value	20000	
Length	2.0	m

Step Modulation

- Step modulation: 19.54 ± 0.51 MV.
- If P_0 is optimized (lowered) for lower energy spread, 17.38 \pm 0.17 MV.
- The gradient depends on acceptable energy spread and we took 17.38 MV as our working assumption.

€¹²⁰ id

100

80

60

40

20

S-band TW accelerator (Positron Booster)

- 2m S-band (2856MHz) accelerator designed for KEKB injector.
- Saw modulation:22.5 MW input with 0.78 A BL gives 23.03 MV/tube (2m)
- Step modulation gives 29.42 ± 0.69 MV.

Parameter	Number	unit
Frequency	2856	MHz
Shunt Impedance	57.8	$M\Omega/m$
Aperture $(2a)$	24.28 - 20.3	mm
Group velocity	1.24 (av)	% of c
Filling time	0.507	$\mu { m s}$
Attenuation	0.333	
Length	1.959	m

Optimization

- Step modulation gives 29.42 ± 0.69 MV.
- P0 optimization does not work, because tf~tp.
- Instead, semi-Step-saw modulation was made with the peak power which is less than that for the perfect compensation.
- The accelerator voltage is determined by the acceptable energy spread.

What is the acceptable energy spread?

- z -d phase space distribution after booster has a larger energy spread by RF curvature.
- Imperfection of the compensation gives additional energy spread.
- The effect is not expected large, because the energy spread is compensated by ECS further.
- As our working assumption, 1% additional energy spread does not affect the yield.
- If larger energy spread is acceptable, the accelerator voltage is gained.

e. Angle=0.22

Booster Configuration

- Lattice design was made by Y. Seimiya, but the accelerator voltage was larger than our assumptions.
- We change the cell number for each section giving a close energy at the section end.

Seimiya's design

	_	V	
Lattice configuration	Number of lattice cells	Accelerating energy	energy at the exit
4Q + 1L	6	$240 { m MeV}$	$490 \mathrm{MeV}$
4Q + 2L	12	$960 { m MeV}$	$1450 { m MeV}$
4Q + 4L	8	$1280 { m MeV}$	$2730 { m MeV}$
4Q + 4S	14	$2240 { m MeV}$	$4970~{\rm MeV}$

Scaled design

Lattice configuration	Number of lattice cells	Accelerating energy	energy at the exit
4Q + 1L	14	$243 { m MeV}$	$493 { m MeV}$
4Q + 2L	28	$974 { m MeV}$	$1467 { m MeV}$
4Q + 4L	19	$1321 { m MeV}$	$2788 { m MeV}$
4Q + 4S	23	$2345 { m MeV}$	$5133 { m ~MeV}$

Booster Configuration (large dE)

If 3% energy spread is acceptable (no significant impact on yield), the configuration is

Lattice configuration	Number of lattice cells	Accelerating energy	energy at the exit
4Q + 1L	12	$234 { m MeV}$	$484 { m MeV}$
4Q + 2L	24	$936 { m ~MeV}$	$1420 { m MeV}$
4Q + 4L	17	$1326 { m ~MeV}$	$2746 { m ~MeV}$
4Q + 4S	20	$2352 { m ~MeV}$	$5098 { m MeV}$

Lattice config.	cell length	number of cells	section length
4Q + 1L	3.8 m	12	$45.6 \mathrm{m}$
4Q + 2L	$6.0 \mathrm{m}$	24	144 m
4Q + 4L	$10.4 \mathrm{m}$	17	$177~\mathrm{m}$
4Q + 4S	$10.4 \mathrm{m}$	20	208 m

Table 11: Section length of the booster giving 574.4 m total.

ECS Section

- ECS design R₅₆=1.2m and R₆₅=-0.8.
- Required voltage is 122 MeV, 3 tubes are enough.
- Beam-loading (phase-shift) can be compensated by an artif cial phase-shift of drive RF.
- If it does not work, we need an additional RF for compensate the phase shift., 4 tubes.

24 August 2017

Impact of Lattice Modification

- The booster configuration (acceleration field andlattice) are modified.
- The yield is re-evaulated with the modified booster configur ation.

	Seimiya	New
# of RF (L-band)	62	144
# of RF (S-band)	56	92
Voltage (L-Band)	40(MV/tube)	17.38(MV/tube)
Voltage (S-Band)	40(MV/tube)	25.49(MV/tube)
Booster Length	323.6(m)	653.6 (m)

Twiss Parameter

PTEP Positron capture simulation for the ILC electron-driven positron source Yuji Seimiya P7 より引用

Imapct on Yield

	変更前	変更後
Yield	2.1	2.0
Total Energy	5.0070(GeV)	5.0917(GeV)

- Yield is decreased by 5%.
- The reason is now under investigation, but it might be a pseudo effect.
- The aperture is set at the end of tubes. The low gradient and the long booster increased the density of checkpoints.
- The total energy is increased. (We set the margin)

The Gospel?

- The yield is decreased by 5%, but the number of positrons in booster is decreased by 10% giving a low beam loading.
- Further optimization might be possible.

Summary

- E-driven ILC positron source is optimized for nominal parameter (staging).
- RF configuration is modified based on a realistic RF source design.
- The beam loading compensation for SW and TW were studied.
- For SW, it works effectively well.
- For TW, semi-perfect methods for L-band and Sband are considered.
- Lattice is re-designed giving 2.0 yield. The change is not considered real.

Total Length

Positron Booster 658 (574m)

Target Capture Linac Chicane 59m

Total: 1047(963) m

24 August 2017