

Time resolution measurements of scintillation counters with SiPM readout for new NA62 trigger Charged Hodoscope (CHOD)

Sergey Kholodenko IHEP, Protvino

<u>Main goal</u>: Measuring Br(K⁺ $\rightarrow \pi^+ \nu \overline{\nu}$) with 10% precision

<u>Main goal</u>: Measuring Br(K⁺ $\rightarrow \pi^+ \nu \overline{\nu}$) with 10% precision

New CHOD preliminary design

• Pad structure

148 pads / 296 electronic channels

- **100x Green:** $265 \times 107 \text{ mm}^2$
- **48x Blue:** $132 \times 107 \text{ mm}^2$
- on-line time resolution
 σ < 600 ps

Trigger Gate length < 5 ns

• Rate / Channel < 400-500 KHz

MC: CHOD rate per tile

Spasimir Balev 16/05/2013

MC: CHOD K $\rightarrow \pi \nu \overline{\nu}$ acceptance

Spasimir Balev 16/05/2013

CHOD counters (prototype)

Direct readout

Size: $132.5 \times 107 \times 20 \text{ mm}^3$

SiPM: 2x SensL MicroFB-60035

WLS-Fiber readout

Size: $265 \times 107 \times 30 \text{ mm}^3$

SiPM: 2x Hamamatsu S10931-05P

 $2x 9 BCF-92 \oslash 1mm$, length = 40cm

Polymerized scintillator produced in Protvino (similar to BC-408)

01 Mar 2014

Cherenkov counter \check{C}_{Fast}

CFD: CAEN Mod N253: SiPMs, Č_{Fast} ORTEC 934 Quad: S3, S4

Time setting counter \check{C}_{Fast} : Cherenkov counter based on XP2020 PMT and \oslash 40mm x 45mm cylinder made of Plexiglas above with no grease.

<u>Time resolution ≈ 175 ps</u>

Multi-Wired Proportional Chambers with cathode readout. 4mm step between wires. Each wire delayed on 10ns. For each plane we have two signals. Coordinate ~ time difference between signals.

WLS Fibers readout

WLS Fibers readout – across fibers

Dynamic range = $A^{max} / A^{min} \approx 1.10$

NA62

 Δt = time difference between start signal from Cfast and signal from SiPM.

Signal arrival time variation vs coordinate across fibers is negligible

60

SiPM1

SiPM2

Distance across fibers, mm

100

80

Time vs coordinate along fiber: max time spread ≈ 400 ps

107 mm x (4.0 \pm 1.5) ns / m \approx 430 \pm 150 ps

WLS Fibers readout – time resolution

NA62

Good uniformity!!!

Direct readout

- Size: $132.5 \times 107 \times 20 \text{ mm}^3$
- SiPMs: 6x6 mm²
 - 2 x SensL MicroFB-60035

 $V_{br} + 3V$

- CPTA amplifiers + shaper
- Covered by Tyvek

Direct readout (1)

Average amplitude vs XY coordinates we can easily see the edges of scintillator. Coordinate resolution ~ 2mm (1 bin).

Direct readout (2)

Direct readout (3)

Direct readout (4)

18/22

Direct readout: time resolution

Trigger gate length

Long Gate: required to make coincidence between SiPMs.

Short Gate: trigger signal from hodoscope.

		Dir	WLS-Fiber			
	Single SiPM	First signal	Last Signal	Mean Time	Single SiPM	Mean Time
MAX Time shift	2.7 ± 0.2 ns	2.7 ± 0.2 ns	0.8 ± 0.1 ns	1.6 ± 0.2 ns	400 ± 150 ps	150 ps
Sigma	$400 \pm 10 \text{ ps}$	370 ± 10 ps	$450 \pm 10 \text{ ps}$	$300 \pm 10 \text{ ps}$	$610 \pm 10 \text{ ps}$	370 ± 10 ps
GATE	4.7 ± 0.2 ns	4.5 ± 0.2 ns	3.0 ± 0.2 ns	3.1 ± 0.2 ns	3.5 ± 0.2 ns	2.0 ± 0.2 ns

 2.5 ± 0.2 ns

Increasing due to WLS fibers length: 40 cm \rightarrow 110 cm

Conclusion

News from last NA62 collaboration week (10-15 Feb 2014):

- WLS Fibers readout selected as main option
- Starting to build a prototype (10-20% of detector) and planing to test it during next run (October 2014)

Conclusion

News from last NA62 collaboration week (10-15 Feb 2014):

- WLS Fibers readout selected as main option
- Starting to build a prototype (10-20% of detector) and planing to test it during next run (October 2014)

backup slides

NA48 Charged Hodoscope

Long bars of BC-408 scintillator and single PM readout

CHOD rate vs gate length

Evgueni Goudzovski WG 18/12/2013

CHOD trigger rates

	Track multiplicity						
Trigger condition: $RICH_4 \times$							
kHz	Κ _{2π}	Κ _{3π}	Κ _{3π0}	K _{µ2}	К _{иЗ}	K _{e3}	Total
Rate [104-300m]	2,730	739	233	8,396	443	670	13,211
Q_1	1,435	412	137	3,848	235	333	6,400
Q ₂	809	394	99	75	118	200	1,695
QQ ₂	854	397	105	138	126	221	1,841
Q _x	645	364	76	15	84	148	1,332
QQ ₃	525	301	73	20	70	149	1,138
Trigger condition: $RICH_4 \times !E_{LAV}(4) \times !E_{SAV}(4) \times$							
kHz	Κ _{2π}	Κ _{3π}	Κ _{3π0}	K _{µ2}	K _{μ3}	K _{e3}	Total
Rate [104-300m]	2,730	739	233	8,396	443	670	13,211
\mathbf{Q}_1	854	355	63	3,843	156	170	5,441
Q ₂	447	343	44	73	74	92	1,073
QQ ₂	468	345	46	135	79	102	1,175
Q _x	343	320	31	14	49	63	820
QQ ₃	228	262	27	19	35	55	626
♦ Including beam pions and halo, the $F(Q_1) \approx 10MHz$. [Giuseppe] ♦ In general, $F(QQ_3 \times) < F(Q_x \times) < F(Q_2 \times) < F(QQ_2 \times)$.							

Evgueni Goudzovski WG 18/12/2013

Intrinsic time resolution

Time spectrum of two counters where S2 was used as a Start and S1 – as a stop signal could be described by Gaussian with sigma:

$$\sigma_{tr}^2 = \sigma_{S_1}^2 + \sigma_{S_2}^2$$

Where σ_{s_1} , σ_{s_2} – intrinsic time resolution of counters S_1 and S_2

Writing the same equations for pairs trigger – studying counters (S_1, S_H) and (S_2, S_H) we can get intrinsic time resolution of all counters:

$$\sigma_{S_H} = \sqrt{\frac{(\sigma_{S_H S_1}^2 + \sigma_{S_H S_2}^2 - \sigma_{tr}^2)}{2}}$$

Trigger counters time resolution

NA62 A

To get intrinsic time resolution:

$$\sigma_{Fast} = \sqrt{\frac{\sigma_{S3-Fast}^2 + \sigma_{S4-Fast}^2 - \sigma_{S3-S4}^2}{2}}$$

$\sigma(\check{C}_{Fast})$	$\approx 175 \text{ ps}$
$\sigma(S_3)$	$\approx 370 \text{ ps}$
$\sigma(S_4)$	$\approx 250 \text{ ps}$
$\sigma(\text{mean}[S_3, S_4])$	≈ 225 ps

01 Mar 2014

Direct readout

SensL 3x3 SiPM noise

SensL 3x3 SiPM noise (25.5 + 2.0 V)

