The upgrade of the CMS Trigger System

Manfred Jeitler

Institute of High Energy Physics of the Austrian Academy of Sciences

> for the CMS collaboration

АВТОМАТ КАЛАШНИКОВ

- trigger

fundub-shoot.elm.su

upgrade of LHC

- − higher energy: $8 \rightarrow 13$ TeV collision energy in 2015
 - » higher cross-sections \rightarrow higher rates
- higher luminosity:
 - » $0.7 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$ in 2012
 - » → > 10^{34} cm⁻²s⁻¹ in 2015
 - » → > 5 x 10³⁴ cm⁻²s⁻¹ at High-Luminosity LHC (HL-LHC)
- higher pile-up (from 30 in 2013 to 140 at HL-LHC)
- narrower bunch spacing (50 ns \rightarrow 25 ns)
- Higgs precision measurements
- search for new physics
- \rightarrow upgrade CMS trigger
 - to keep physics potential
 - else: would have to raise thresholds more and more

- now: first "long shutdown" ("LS 1")
 phase-1 upgrade
- 2023-2025: third "long shutdown" ("LS 3")
- silicon strip tracker upgrade
- use tracker in Level-1 Trigger: "phase-2 upgrade"

CMS

Novosibirsk 2014

5

The good ones go into the pot, The bad ones go into your crop.

computer farm running CMS analysis software

reduce 100 kHz to a few hundred Hz

High-Level Trigger ("HLT")

- hardware based (custom electronics)

- L1-accept: read out full CMS detector
- pipe-lined architecture
- bunch-crossing rate to 100 kHz

two-tier trigger setup:

Level-1 Trigger ("L1")

- reduce LHC's 40-MHz

The present CMS trigger system

The present CMS Level-1 Trigger

Manfred Jeitler

The present CMS Level-1 Trigger

Manfred Jeitler

Level-1 Trigger phase-1 upgrade strategy

- , HEPHY Institute of High Energy Physics
- task: reduce rates and occupancy while keeping efficiency
- calorimeter trigger
 - higher precision in coordinates (η , ϕ) and transverse energy (E_T)
 - flexibility for improved and more complex algorithms (pile-up subtraction, tau-jets etc.)
 - more candidate objects

muon trigger

- higher precision in coordinates (η, ϕ) and transverse momentum (p_T)
- more candidate objects
- combine candidates from different detectors at track-finder level
- profit from additional chambers in endcaps (YE04 and RE04)

global trigger

- more algorithms (current limit: 128)
- more sophisticated algorithms:
- *now*: multiple objects, simple angular correlations
- *future*: invariant mass, transverse mass, complex correlations

Manfred Jeitler

CMS

Level-1 Trigger phase-1 upgrade technology

- current system consists of many different custom-built electronics modules
 - VME based
 - digital electronics implemented in FPGAs and ASICs
 - maintenance and spare-module management problematic
- in future aim for higher integration
 - use larger FPGAs
 - build system in more compact way (fewer boards)
- use standardized electronics where possible
 - custom built but same for many systems
 - partly also COTS (Commercial off-the-shelf) components
 - new form factor: μTCA (Micro Telecommunications Computing Architecture)
- use optical links
 - higher data rates (higher precision, more trigger objects)
 - less space for connectors (µTCA instead of 9U-VME)

CMS

Progress in FPGAs

Manfred Jeitler

Progress in FPGAs

Manfred Jeitler

Original system: many different custom-built electronics modules (VME)

Example:

Global Trigger (left) and Global Muon Trigger (right)

Manfred Jeitler

Original system: many parallel galvanic connections

Example:

Drift Tube Track Finder (part of muon trigger)

Manfred Jeitler

Original system: many parallel galvanic connections

Example:

Drift Tube Track Finder (part of muon trigger)

Manfred Jeitler

AMC13 v1 μ HTR module 1181 ANT VT892 *********** VT892 **Dual EMI Air Filter** Trate 1

MCH module

Manfred Jeitler

Power

module

Manfred Jeitler

presently $\sim 4 \ \mu s$

- ~ 160 clock cycles
- limited by tracker pipeline length

will be increased only during tracker upgrade

- Long Shutdown 3: phase-2 upgrade
- ~2023

phase-1 trigger upgrade will have to fit into same latency budget

- challenge because of optical links
 - » parallel-serial conversion (SerDes) needs time
- we have some reserve

- make use of redundant systems already at track-finder level
 - so far candidates from CSC/RPC and DT/RPC combined only after track finding, in Global Muon Trigger
- 3 regional systems: Barrel Track Finder (DT+RPC), Endcap Track Finder (CSC+RPC), Overlap Track Finder (DT+CSC+RPC)
- high rate particularly problematic in end caps
 - Cathode Strip Chambers (CSC) and Resistive-Plate Chambers (RPC)
 - outermost chambers being added now
 - improve p_T resolution and thus reduce rate
 - current design ($\Delta \phi$ comparisons) does not scale well
 - \rightarrow switch to pattern matching system to accommodate higher occupancy
- Drift Tube trigger relocation
 - moved front-end electronics ("sector collectors") from experimental cavern to electronics cavern
 - all trigger electronics close to Global Trigger, always accessible in radiation-safe area

Manfred Jeitler

Calorimeter trigger 🕍

transition from parallel triggering systems to *time-multiplexed trigger*

- processors take turns
- each processor gets all the data for a given bunch crossing
- same hardware with different connections could run parallel triggering system

Manfred Jeitler

Stage-1 Upgrade of Level-1 in 2015

• to profit from improvements in calorimeter algorithms early on

Current L1 Trigger System

- again centralizing all final decision taking in one crate
- Global Trigger Logic in one µTCA module
 - if needed, several modules can run in parallel for more trigger algorithms
- use of big FPGA (Xilinx Virtex-7) will allow much more complex logic
 - large number of high-speed IO links and logic cells
 - big lookup tables, floating-point operations in DSPs
- Trigger Control System moves to different crate
 - combined with trigger distribution system (TTC) into "TCDS" (Trigger Control and Distribution System)

Parallel running of old and new system in 2015

- new trigger systems cannot be commissioned by 2014
 - end of "Long Shutdown 1"
- plan running "old" and "new" systems in parallel
 - trigger with old system
 - record decision proposed by new system
- study and debug new system
- switch to new system during short shutdown
 - Year-end technical stop
 - upgrade work must not jeopardize data taking!

Manfred Jeitler

Upgrade of the CMS trigger system

Novosibirsk 2014 23

Level-1 Tracker trigger: new tracker layout

roughly same total sensor area and number of sensors

number of readout channels up by almost one order of magnitude

Manfred Jeitler

Phase-2 upgrade:

Level-1 Tracker trigger

- at present, Silicon Strip Tracker only in High-Level Trigger
- plan to use it in Level-1 Trigger after tracker replacement
 - after 2022, during Long Shutdown 3
 - tracker information available as "seeds" to High-Level Trigger
- idea: select high-momentum tracks at local level
 - look for low bending (close azimuth in adjacent strip modules)

Tracker trigger concept

- Silicon modules provide at the same time "Level-1 data" (@ 40 MHZ), and "readout data" (upon Level-1 trigger)
 - whole tracker sends out data at each bunch crossing: "push path"
- Level-1 data require local rejection of low-p_T tracks
- tracker modules with p_T discrimination ("p_T modules")
- Level-1 "stubs" are processed in the back-end
- Pixel option
 - possibly also use Pixel detector in "pull" architecture
 - longer latency needed (20 μ s)

Track Trigger: pattern recognition

pattern recognition using "associative memory"

– CAM = "content addressable memory"

by comparing with patterns find candidates ("roads")

Manfred Jeitler

- presence of track match validates a calorimeter or muon trigger object,
 - e.g. discriminating electrons from hadronic ($\pi^0 \rightarrow \gamma \gamma$) backgrounds in jets
- I link precise tracker system tracks to muon system tracks
 - improve precision on the p_T measurement
 - sharpen thresholds in muon trigger
- check isolation of candidate $(e, \gamma, \mu \text{ or } \tau)$
- primary z-vertex location within 30-cm "luminous region"
 - from projecting tracks found in trigger layers
 - discrimination against pile-up events in multi-object triggers (e.g. lepton-plus-jet triggers)

CMS Experiment at LHC, CERN Data recorded: Mon May 28-01:16:20/2012 CE91 Run/Event: 195099-/35488125 Eumi section: 65 Oxbit/Crossing: 16992111 / 2295

pile-up of events

High Level Trigger (HLT)

- now: $\sim 13\ 000$ CPU cores
- more and faster computers will allow for more calculation time
 - more complex algorithms
 - − ~ 100 → ~ 1000 ms per event
- improving the object reconstruction and physics selection to bring it closer to the offline version
 - phase 2: higher pileup and input rate
 - use L1 Track trigger info at very first stage of HLT processing
 - reduce HLT processing time (unpacking)

Scenario for phase-2 upgrade

Tracker replacement allows for

- Track Trigger
- increased latency (10-20 μs)
 - replace ECAL electronics, for 20 μs also endcap muon (CSC) electronics

finer granularity

- use single-crystal granularity in ECAL instead of "trigger towers"
- L1 trigger rate 0.5 1 MHz
 - up from 100 kHz
 - replace muon Drift Tube electronics
 - needed for hadronic triggers (do not benefit so much from Track Trigger)
 - HLT should cope with this (estimate 50x increase; Moore's law)
 - HLT output rate of 10 kHz

LHC development makes trigger upgrade mandatory

- else we lose much of the data
- Phase 1 upgrade underway
 - commission in 2015
 - full deployment in 2016
- Phase 2 upgrade > 2022
 - Track Trigger
 - increase latency to 10 or 20 μ s
 - L1 rate ~ 0.5 -1 MHz
 - HLT rate $\sim 10 \text{ kHz}$

- LHC development makes trigger upgrade mandatory
 - else we lose much of the data
- Phase 1 upgrade underway
 - commission in 2015
 - full deployment in 2016
 - Phase 2 upgrade > 2022
 - Track Trigger
 - increase latency to 10 or 20 μs
 - L1 rate ~ 0.5-1 MHz
 - HLT rate ~ 10 kHz

INSTR14

BINP, Novosibirsk

Thank you

BACKUP

Manfred Jeitler

LHC / CMS schedule

- 2013-2014 first "long shutdown" ("LS 1")
 - part of trigger electronics being upgraded: "phase-1 upgrade"
- 2015-2017 data taking @ ($\sqrt{s} = 13 \text{ TeV}$)
 - LHC may exceed design luminosity (10³⁴ cm⁻²s⁻¹) and run at higher than design pile-up !
 - » original design: ~ 20 interactions per bunch crossing
 - during this period evolve to improved system
 - Pixel detector replacement at end of 2016
- 2018-2019 second "long shutdown" ("LS 2")
- 2023-2025 third "long shutdown" ("LS 3")
 - silicon strip tracker upgrade
 - plans to use tracker in Level-1 Trigger: "phase-2 upgrade"

schedule may change over time

Why upgrade the CMS trigger?

- radiation damage to inner detectors (Pixels, Silicon Strips) and on-detector electronics
 - replacement planned from the beginning
 - put as many systems as possible out of radiation area (move to "electronics cavern")

obsolescence

- long preparation times for big experiments
- newer electronics will improve reliability and performance

higher performance

- higher LHC luminosity and pileup
- need better detector resolution and more sophisticated triggering algorithms

must not jeopardize performance of detector during data taking!

Level-1 Muon trigger

three technologies

- Drift Tubes (DT, in barrel)
- Cathode Strip Chambers (CSC, in endcaps)
- Resistive Plate Chambers (RPC, everywhere)
- redundant
- complementary technologiesgeometrical overlap

- muons from all 3 systems processed in Global Muon Trigger final muon candidates determined by
 - quality (e.g. number of hits)
 - correlation between systems (RPC+DT, RPC+CSC)
 - transverse momentum

Level-1 Calorimeter trigger

- Electromagnetic Calorimeter (ECAL)
 - block of 5x5 lead-tungstate crystals forms a "trigger tower"
- Hadronic Calorimeter (HCAL)
- combination of signals from both calorimeters allows to determine candidates for
 - e/gamma (discriminated only at High-Level Trigger)
 - jets ("central" and "forward")
 - tau jets
 - as well as

Manfred Jeitler

- total and missing energy
- total and missing hadronic energy

CMS Trigger & DAQ Systems

ATLAS & CMS Triggered vs. Triggerless Architectures

1 MHz (Triggered):

- Network:
 - 1 MHz with ~5 MB: aggregate ~40 Tbps
 - Links: Event Builder-cDAQ: ~ 500 links of 100 Gbps
 - Switch: almost possible today, for 2022 no problem
- HLT computing:
 - General purpose computing: 10(rate)x3(PU)x1.5(energy)x200kHS6 (CMS)
 - Factor ~50 wrt today maybe for ~same costs
 - Specialized computing (GPU or else): Possible

40 MHz (Triggerless):

- Network:
 - 40 MHz with ~5 MB: aggregate ~2000 Tbps
 - Event Builder Links: ~2,500 links of 400 Gbps
 - Switch: has to grow by factor ~25 in 10 years, difficult
- Front End Electronics
 - Readout Cables: Copper Tracker! Show Stopper
- HLT computing:
 - General purpose computing: 400(rate) x3(PU)x1.5(energy)x200kHS6 (CMS)
 - Factor ~2000 wrt today, but too pessimistic since events easier to reject w/o L1
 - This factor looks impossible with realistic budget
 - Specialized computing (GPU or ...)
 - Could possibly provide this ...

• L1 trigger upgrade for the Phase 1

- Upgrade CALO trigger, muon track finder and global trigger, as described in the TDR
- <u>This will be fully operational from 2016 but it will be commissioned in parallel</u> <u>during 2015</u>

Manfred Jeitler

Stage-1 Upgrade in 2015

- Replace current GCT
 - With pre-production upgrade processors
 - Use current RCT
 - Reprogram it to provide 2x1 and 4x4 calo tower clusters with with total E_T sum and EM id
 - oRSC to connect RCT to the new GCT
 - These cards are the only new design specific for Stage-1
 - Retain data path to legacy GCT for easy rollback
 - Use current GT
 - oSLB and oRM mezzanines already planned for LS1, as well as uHTR for HF
 - To allow parallel commissioning of full L1 upgrade

- Significant performance improvements possible in:
 - Jets and energy sums
 - From PU subtraction
 - EG
 - From isolation, with PU subtracted
 - Taus
 - From 2x1 EG object without E/H cut

Commercial μTCA module **Set HEP** MCH (MicroTCA Carrier Hub)

HCAL Backend Electronics : HF will upgrade to uTCA in LS1

- <image>
 - Pre-production HF uHTRs recently completed at Saha (India)
 - Successful Electronics System Review in June
 - Installation targeted for early 2014
 - 10 Gbps-capable pre-production AMC13 (AMC13XG) recently delivered at Boston University
 - Development and testing firmware with uHTR underway
 Pawel de Barbaro

LHC schedule beyond LS1

LHC schedule approved by CERN management and LHC experiments spokespersons and technical coordinators Monday 2nd December 2013

Manfred Jeitler

CMS Trigger & DAQ Systems

- •LHC beam crossing rate is 40 MHz & at full Luminosity of 10³⁴ cm⁻²s⁻¹ yields 10⁹ collisions/s
- Reduce to 100 kHz output to High Level Trigger and keep high-P_T physics
- Pipelined at 40 MHz for dead time free operation
- Latency of only 4 µsec for collection, decision, propagation

Manfred Jeitler

Calorimeter trigger upgrade

- improve resolution in coordinates
 - azimuth φ and pseudorapidity η
- improve identification of tau jets
 - better isolation criteria

further improve e/gamma isolation determination

signals used by the first-level trigger

muons

- tracks
- several types of detectors (different requirements for barrel and endcaps):
- in ATLAS:

>>	RPC (Resistive Plate Chambers):	barrel
»	TGC ("Thin Gap Chambers"):	endcaps
		77 \

- » not in trigger: MDT ("Monitored Drift Tubes")
- in CMS:

»	DT (Drift Tubes):	barrel
»	CSC (Cathode Strip Chambers):	endcaps
»	RPC (Resistive Plate Chambers):	barrel + endcaps

calorimeters

- clusters
- electrons, jets, transverse energy, missing transverse energy
- electromagnetic calorimeter
- hadron calorimeter
- only in high-level trigger: tracker detectors
 - silicon strip and pixel detectors, in ATLAS also straw tubes
 - cannot be read out quickly enough

How does the trigger actually select events?

the first trigger stage has to process a limited amount of data within a very short time

- relatively simple algorithms
- special electronic components
 - » ASICs (Application Specific Integrated Circuits)
 - » FPGAs (Field Programmable Gate Arrays)
- something in between "hardware" and "software": "firmware"
 - » written in programming language ("VHDL") and compiled
 - » fast (uses always same number of clock cycles)
 - » can be modified at any time when using FPGAs

```
pre_algo_a(54) \ll tau_2_s(2);
                                                                                          Х
pre_algo_a(55) \ll tau_2_s(1);
pre_algo_a(56) \Leftarrow muon_1_s(10) AND ieg_1_s(2);
pre_algo_a(57) \Leftarrow muon_1_s(6) AND ieg_1_s(28);
                                                                                          /ed)
pre_algo_a(58) \ll muon_1_s(8) AND (ieg_1_s(25) OR eg_1_s(7));
pre_algo_a(59) \ll muon_1_s(9) AND (jet_1_s(9) OR fwdjet_1_s(5) OR tau_1_s(26));
pre_algo_a(60) \ll muon_1_s(4) AND (jet_1_s(8) OR fwdjet_1_s(4) OR tau_1_s(25));
pre_algo_a(61) \ll muon_1_s(7) AND (jet_1_s(4) OR fwdjet_1_s(20) OR tau_1_s(16));
pre_algo_a(62) <= muon_1_s(3) AND (jet_1_s(20) OR fwdjet_1_s(15) OR tau_1_s(10));
pre_algo_a(63) \Leftrightarrow muon_1_s(2) AND tau_1_s(9);
pre_algo_a(64) \Leftarrow muon_1_s(1) AND tau_1_s(20);
pre_algo_a(65) \iff ieg_1_s(26) AND (jet_1_s(7) OR fwdjet_1_s(3) OR tau_1_s(24));
pre_algo_a(66) \iff ieg_1_s(24) AND (jet_1_s(19) OR fwdjet_1_s(14) OR tau_1_s(8));
pre_algo_a(67) \iff ieg_1_s(10) AND (jet_1_s(5) OR fwdjet_1_s(1) OR tau_1_s(19));
pre_algo_a(68) \iff ieg_1_s(9) \text{ AND } (jet_1_s(3) \text{ OR } fwdjet_1_s(19) \text{ OR } tau_1_s(15));
pre_algo_a(69) \Leftrightarrow ieg_1_s(8) AND tau_1_s(7);
```

Novosibirsk 2014 50

Manfr

TRIGGER COMPONENTS HEPHY

Manfred Jeitler

turn-on curves

reality:

LHC orbit with 3564 "bunch crossings" (colliding bunches in CMS: blue; single bunches in CMS: red/white):

Fill 2129 Bunch Pattern at CMS 1317 luminosity bunch pairs – ×10²⁷ cm⁻² sec⁻¹

 $BX 0 \rightarrow 98$

BACKUP Track Trigger

Manfred Jeitler

Trigger, Threshold	Algorithm	Rate reduction	Full eff. at the plateau	Comments
Single Muon, 20 GeV	Improved Pt, via track matching	~ 13 (η <1)	~ 90 %	Tracker isolation may help further.
Single Electron, 20 GeV	Match with cluster	 > 6 (current granularity) >10 (crystal granularity) (η < 1) 	90 %	Tracker isolation can bring an additional factor of up to 2.
Single Tau, 40 GeV	CaloTau – track matching + tracker isolation	O(5)	O(50 %) (for 3-prong decays)	
Single Photon, 20 GeV	Tracker isolation	40 %	90 %	Probably hard to do much better.
Multi-jets, HT	Require that jets come from the same vertex			Performances depend a lot on the trigger & threshold.

- Silicon modules provide at the same time "Level-1 data" (@ 40 MHZ), and "readout data" (upon Level-1 trigger)
 - whole tracker sends out data at each bunch crossing: "push path"
- Level-1 data require local rejection of low-p_T tracks
 - reduce data volume and simplify track finding @ Level-1
 - Threshold of ~ 2 GeV \Rightarrow data reduction of one order of magnitude or more
- tracker modules with p_T discrimination ("p_T modules")
 - correlate signals in two closely-spaced sensors
 - exploit the strong magnetic field of CMS
- Level-1 "stubs" are processed in the back-end
 - form Level-1 tracks with p_T above ~2 GeV
- Pixel option
 - possibly also use Pixel detector in "pull" architecture
 - longer latency needed (20 μs)

Muons : turn-on curves

Much sharper turn-on curves w.r.t. DTTF, as expected from the much better PT resolution. Hence the contribution from mis-measured low PT muons (which makes most of the DTTF rate) is dramatically reduced.

Manfred Jeitler

- DTTF : Flattening of the rates at high threshold
- Matching the DT primitives with L1Tracks : large rate reduction,
 > 10 at threshold > ~ 14 GeV.

Electrons

Rate reduction brought by matching L1EG to L1Tkstubs in the central region (| eta | < 1)

Red : with the current L1Cal granularity.

Green : if crystal-level information is available for L1EG. The better position resolution for the L1EG object improves the performance of the matching to the tracker.

(NB : the pure calorimetric L1EG rates could also be reduced with the finer granularity. Not taken into account here.)

Manfred Jeitler

p_T modules: working principle

- measure p_T via $\Delta(R\varphi)$ over a given ΔR
- for a given p_T , $\Delta(R\varphi)$ increases with R
 - same geometrical cut corresponds to harder p_T cuts at large radii
 - at low radii, rejection power limited by pitch
 - optimize selection window and/or sensors spacing for consistent p_T selection through the tracking volume

e.g. Window = 5

- **barrel:** ΔR is given directly by the sensors spacing
- end-cap: dependence on detector location
 - End-cap configuration typically requires wider spacing

Manfred Jeitler

- Associate jets to nearby L1 tracks to determine z position
 - (1) Select tracks with dR(track, jet) < 0.40
 - |Ztrack| < 25 cm
 - chi2_{track} < 100
 - (2) p_T averaged z position of selected tracks -----> initial jet z position "z₁(jet)"
 - (3) Remove outliers in two steps & recalculate z position
 - First outlier step: $|z_{track} z_1(jet)| < 5cm$
 - Second outlier step: $|z_{track} z_2(jet)| < 1cm$
- \longrightarrow updated z position "z₂(jet)"
 - final z position "z_{final}(jet)"

Track finding @ Level-1 Institute of High Energy

Track finding @ Level-1 Ensible of High Energy Physics

Manfred Jeitler

Within a latency of O(µs): Associative Memories

- Pattern matching using AM technologies dates back to CDF SVT to enhance collection of events with long-lived hadrons
- HL-LHC: much higher occupancy, higher event rates, higher granularity
- Plan of development
 - » Software emulation (ongoing)
 - » Build a demonstrator system using ATLAS FastTracKer boards (started)
 - » Develop dedicated AM chips and boards

Manfred Jeitler

VERY preliminary results!

- Preliminary studies indicate that full efficiency can be achieved over the whole η range
 - Sharp turn-on curve of the efficiency around ~1.5 GeV/c
 - Implementation in hardware?

Basic requirements and guidelines – II

Tracker input to Level-1 trigger

- \odot µ, e and jet rates would substantially increase at high luminosity
 - ★ Even considering "phase-1" trigger upgrades
- Increasing thresholds would affect physics performance
 - ★ Performance of algorithms degrades with increasing pile-up
 - Muons: increased background rates from accidental coincidences
 - Electrons/photons: reduced QCD rejection at fixed efficiency from isolation [#]/₂
- Even HLT without tracking seems marginal
- Add tracking information at Level-1
 - ★ Move part of HLT reconstruction into Level-1!

Goal for "track trigger":

- Reconstruct tracks above 2 GeV
- O Identify the origin along the beam axis with ∼ 1 mm precision

BACKUP

muons

Manfred Jeitler

Level-1 muon trigger

Manfred Jeitler

Manfred Jeitler

CSC Sector processor 2010-2011 prototype, Florida

Manfred Jeitler

Upgrade of the CMS trigger system

Novosibirsk 2014 70

Manfred Jeitler

YE-1 chambers with even phi indices, YE+1 chambers with odd phi indices

Manfred Jeitler

Upgrade of the CMS trigger system

ME1/1 view (from CMS IN-2007/024)

Figure 9. Numbering of CSC chambers within ME1 trigger sectors, as viewed from the IP.

• The 48 strips of ME1/1a are ganged 3:1 in 16 readout channels

• e.g. strips 1 (2), 17 (18) and 33 (34) are ganged together into the 1st (2nd) readout channel

• In the CSCTF LUTs the φ value is shifted to the middle of the CFEB

• We will mistake the ϕ assignment at most by 1/3 (with the older assignment up to 2/3)

76

Rates and efficiencies of current and upgraded calorimeter trigger

Manfred Jeitler

Upgrade of the CMS trigger system

Novosibirsk 2014 77