Detector Systems at the International Linear Collider

INSTR-2014 Novosibirsk, Russia, February 2014 Frank Simon Max-Planck-Institute for Physics on behalf of

on behalf of ILD & SiD

Ap. Ag > 1 t

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Outline

- Introduction
 - The ILC Physics Landscape
 - ... and the resulting Detector Requirements
- ILD & SiD
 - General Design Choices
 - Vertexing
 - Main Tracking
 - Calorimetry
 - Performance & Cost
- Conclusions

The ILC Physics Landscape

... a combination of certainty and speculation:

- Excellent physics program guaranteed:
 - Higgs physics mass, couplings, potential, ...
 - Top physics properties (mass, width,...), top as a probe for New Physics
 - Precision physics electroweak measurements, QCD, …

The ILC Physics Landscape

... a combination of certainty and speculation:

- Excellent physics program guaranteed:
 - Higgs physics mass, couplings, potential, ...
 - Top physics properties (mass, width,...), top as a probe for New Physics
 - Precision physics electroweak measurements, QCD, …

- Discovery potential for New Physics
 - Direct production of new particles -Mass reach up to √s/2 for (almost) all particles
 - Spectroscopy of New Physics
 - Indirect (model-dependent) search for New Physics extending far beyond \sqrt{s}

... and the resulting Detector Requirements I

... and the resulting Detector Requirements I

4

... and the resulting Detector Requirements II

- In general the cross sections of physics processes are quite modest at ILC compared to LHC - at the lower energy stages typically 1000s to 10s of thousands of events - Want to be able to use all possible final states, including high-BR hadronic decays
 - Relevant in many different cases: Identification / separation of gauge bosons (W, Z)

Generic consideration:

... and the resulting Detector Requirements II Energy Jet 1

In general the cross sections of physics processes are quite modest at ILC compared to LHC - at the lower energy stages typically 1000s to 10s of thousands of events - Want to be able to use all possible final states, including high-BR hadronic decays

EJ1

... and the resulting Detector Requirements II

 In general the cross sections of physics processes are quite modest at ILC compared to LHC - at the lower energy stages typically 1000s to 10s of thousands of events - Want to be able to use all possible final states, including high-BR hadronic decays

INSTR-14, Novosibirsk, February 2014

Frank Simon (fsimon@mpp.mpg.de)

18000

16000

14000

12000

10000

8000

6000

5

EJ1

417085

111.

69.68

Entries

Mean

RMS

... and the resulting Detector Requirements III

 $e^+e^- \rightarrow ttH \rightarrow q\bar{q}b\,q\bar{q}\bar{b}\,b\bar{b}$ ILD, 1 TeV

• Precise event reconstruction in highmultiplicity environments

Detectors at ILC INSTR-14, Novosibirsk, February 2014

Frank Simon (fsimon@mpp.mpg.de)

6

Putting the Requirements together

- Precise vertexing impact parameter resolution:
- High resolution tracking transverse momentum resolution

$$0_b < 3 \oplus 10/pp \sin^2 - 0 \mu \mathrm{m}$$

 $\sigma_{\rm c} < 5 \oplus 10 / n\beta \sin^{3/2} \theta$ um

$$\delta(1/p_T) \simeq 2 \times 10^{-5}/\text{GeV}/c$$

 Jet energy resolution ~ 2.5 σ separation of W, Z (not too far from perfect separation)

$$\Delta E_{Jet}/E_{Jet} \sim 3.5\%$$

7

... and designing a Detector

- A multi-layer pixel detector with small pixels close to the interaction point
- High resolution tracking detectors
- A strong magnetic field
- Low material budget Eliminate multiple scattering as much as possible
- Imaging calorimeters inside of the magnet & particle flow algorithms

... and designing a Detector

- A multi-layer pixel detector with small pixels close to the interaction point
- High resolution tracking detectors
- A strong magnetic field
- Low material budget Eliminate multiple scattering as much as possible
- Imaging calorimeters inside of the magnet & particle flow algorithms

Where this leads you: A detector design a bit like CMS, but

- Shorter detector barrel: Only small boosts of CMS system in ILC collisions
- Very different calorimeters: No emphasis on photon resolution, granularity instead to achieve best jet energy resolution- HCAL plays a central role
- Much more aggressive reduction of material budget
 - Reduced need for cooling: Power-pulsing possible
 - Time for readout between bunch trains
 - Technological advances Thinner silicon, low-power electronics, light-weight mechanics,...

ILD and SiD

Detectors at ILC INSTR-14, Novosibirsk, February 2014

Frank Simon (fsimon@mpp.mpg.de)

ゆうりょうすた

The Fundamental Design Principle: Particle Flow

- A modern approach to event reconstruction: Reconstruct every single particle in an event, instead of thinking in "towers"
- Enables excellent jet energy resolution by making use of all available measurements of a particle (*p* in tracker, *E* in calorimeters)

Detectors at ILC INSTR-14, Novosibirsk, February 2014

Frank Simon (fsimon@mpp.mpg.de)

The Fundamental Design Principle: Particle Flow

- A modern approach to event reconstruction: Reconstruct every single particle in an event, instead of thinking in "towers"
- Enables excellent jet energy resolution by making use of all available measurements of a particle
 (*p* in tracker, *E* in calorimeters)

• Separation of close-by particles often more important than pure energy resolution

► Highly granular detector systems, in particular also in the calorimeters!

ILD & SiD - Similar Concepts, Different Realization

Detectors at ILC INSTR-14, Novosibirsk, February 2014

Frank Simon (fsimon@mpp.mpg.de)

11

- The requirements allow some flexibility for design choices - the main parameter is the radius of tracker
 - To reach p_T resolution requirements:
 - smaller tracker requires higher field
 - smaller tracker requires higher spatial resolution for space points
 - To reach required PFA performance:
 - smaller tracker requires higher field to improve particle separation, splitting of charged & neutrals in jets
 - higher field favors higher granularity in calorimeters

- The requirements allow some flexibility for design choices - the main parameter is the radius of tracker
 - To reach p_T resolution requirements:
 - smaller tracker requires higher field
 - smaller tracker requires higher spatial resolution for space points
 - To reach required PFA performance:
 - smaller tracker requires higher field to improve particle separation, splitting of charged & neutrals in jets
 - higher field favors higher granularity in calorimeters

N.B. : Solenoid cost (and technical feasibility) steeply scales with field and radius => Either large radius or high field!

- Different choices in tracker technology: • Trade number of measurements and precision of individual measurements
 - Five-layer all-Si tracker in SiD
 - TPC with > 200 space points on a track in ILD (NB: To reach resolution goal, an additional Si layer outside of the TPC is required!)
- Trading cost vs. jet energy resolution at higher energies (1 TeV option): Depth of the calorimeter system
 - SID HCAL: 4.5 λ_{l} , ILD HCAL: 6 λ_{l}

- Different choices in tracker technology: Trade number of measurements and precision of individual measurements
 - Five-layer all-Si tracker in SiD
 - TPC with > 200 space points on a track in ILD (NB: To reach resolution goal, an additional Si layer outside of the TPC is required!)
- Trading cost vs. jet energy resolution at higher energies (1 TeV option): Depth of the calorimeter system
 - SiD HCAL: 4.5 $\lambda_{l,}$ ILD HCAL: 6 λ_{l}

In general: How much cost is emphasized drives the choice between small and large detector: ECAL radius as main cost driver, but larger detector favorable for PFA

The Vertex Detector

• Pixel detector system with barrel and forward discs (forward strips an option for ILD)

- 5 barrel single layers (SiD) / 3 double layers (ILD default)
- as close as possible to IP: Innermost layer at ~ 15 mm
- Low mass: Goal ~ 0.15% X_0 per layer
- Single point spatial resolution ~ 3 -5 μm
- Low occupancy, not exceeding a few % also in innermost layers
- Pixel sizes of ~ 20 x 20 µm² or smaller, single bunch timing (~ 700 ns) for SiD

The Vertex Detector - Technological Possibilities

- A wide range of technologies under study for both ILD and SiD
 - CMOS MAPS, DEPFETs, SOI, FP-CCDs, 3D integrated sensors
 - All require thinned silicon on the 50 µm level
 - Very light-weight supports, no liquid cooling to achieve material budget goals
 - Low power consumption crucial to allow air cooling: Power-pulsing of readout electronics

The Vertex Detector - Technological Possibilities

- A wide range of technologies under study for both ILD and SiD
 - CMOS MAPS, DEPFETs, SOI, FP-CCDs, 3D integrated sensors
 - All require thinned silicon on the 50 µm level
 - Very light-weight supports, no liquid cooling to achieve material budget goals
 - Low power consumption crucial to allow air cooling: Power-pulsing of readout electronics
- First mechanical concepts demonstrated: low-mass PLUME double ladder (two layers of MIMOSA sensors)

- first prototype with 0.6% X₀ total budget demonstrated in test beam
- Improved prototype with 0.35% X₀ in construction

Detectors at ILC INSTR-14, Novosibirsk, February 2014

15

The Main Tracker: Two quite different Approaches

SiD: all silicon tracker

- 5 barrel layers, axial-only measurement
- 4 discs, stereo layers

central tracks:

• 5 measurements, 8 µm precision

ILD: TPC, augmented with Si trac

- one stereo strip layer outside of TPC (SET, ETD)
- two stereo strips inside (SIT)

central tracks:

- 220 space points in TPC,
 - \sim 60 100 μm precision
- 3 measurements in Si, ~ 7 μm precision

The SiD Main Tracker

Number of Layers 12 إكريها 10 **Vertex Barrel Inner Vertex Disks** 8 **Outer Vertex Disks** - Tracker Barrel 6 Tracker Disks — Total 4 2 0 20 30 40 50 10 0 θ [°]

• Very low-mass design:

Front-end chip directly bonded on silicon sensor

- no need for electronics hybrid
- Compact electronics: KPIX chip, 1024 readout channels per ASIC

The SiD Main Tracker

Number of Layers 12 كليها 10 Vertex Barrel **Inner Vertex Disks** 8 **Outer Vertex Disks** Tracker Barrel 6 Tracker Disks - Total 4 2 0 20 30 40 50 10 0 θ [°]

- Very low-mass design: Front-end chip directly bonded on silicon sensor - no need for electronics hybrid
- Compact electronics: KPIX chip, 1024 readout • channels per ASIC

The ILD Main Tracker

The ILD Main Tracker

Detectors at ILC INSTR-14, Novosibirsk, February 2014

18

The Calorimeters

- The detectors where PFA "happens" Quite different than calorimeter systems at current experiments in terms of granularity: Segmentation finer than the typical structures in particle showers
 - ECAL: X_0 , ρ_M (length scale & width of shower)
 - HCAL: length scale ~ $\lambda_{\text{I}},$ but em subshowers impose requirements not too much different than in ECAL

The Calorimeters

- The detectors where PFA "happens" Quite different than calorimeter systems at • current experiments in terms of granularity: Segmentation finer than the typical structures in particle showers
 - ECAL: X₀, ρ_M (length scale & width of shower)
 - HCAL: length scale ~ λ_{l} , but em subshowers impose requirements not too much different than in ECAL

Depends on material:

- in W: X₀ ~ 3 mm, ρ_M ~ 9 mm
- in Fe: X₀ ~ 20 mm, ρ_M ~ 30 mm

NB: Best separation for narrow showers particularly important in ECAL

When adding active elements: ~ 0.5 cm³ segmentation in ECAL, ~ 3 - 25 cm³ in HCAL

 $\Rightarrow O 10^{7-8}$ cells in HCAL, 10⁸ cells in ECAL! - fully integrated electronics needed.

The Calorimeters

- The detectors where PFA "happens" Quite different than calorimeter systems at current experiments in terms of granularity: Segmentation finer than the typical structures in particle showers
 - ECAL: X₀, ρ_M (length scale & width of shower)
 - HCAL: length scale ~ λ_{l} , but em subshowers impose requirements not too much different than in ECAL

Depends on material:

- in W: X₀ ~ 3 mm, ρ_M ~ 9 mm
- in Fe: X₀ ~ 20 mm, ρ_M ~ 30 mm

NB: Best separation for narrow showers particularly important in ECAL

When adding active elements: ~ 0.5 cm³ segmentation in ECAL, ~ 3 - 25 cm³ in HCAL

 $\Rightarrow O 10^{7-8}$ cells in HCAL, 10⁸ cells in ECAL! - fully integrated electronics needed.

Several technological options both in ILD and SiD:

- ECAL: Tungsten absorbers, Si or Scintillator with SiPMs as active medium
- HCAL: Steel absorbers
 - analog: Scintillator tiles with SiPMs
 - digital or semi-digital: RPCs, GEMs, µMegas (digital or semi-digital)

The ILD Calorimeters

- ECAL: Si PIN diodes with 5 x 5 mm² pads or crossed scintillator strips with SiPM readout, 5 x 45 mm²
 - two longitudinal segments with different absorber thickness, a total of 30 layers with tungsten absorbers
 - integrated readout electronics on a PCB ullet

The ILD Calorimeters

- ECAL: Si PIN diodes with 5 x 5 mm² pads or crossed scintillator strips with SiPM readout, 5 x 45 mm²
 - two longitudinal segments with different absorber thickness, a total of 30 layers with tungsten absorbers
 - integrated readout electronics on a PCB
- HCAL: Scintillator tiles (3 x 3 cm²) with SiPM readout or RPCs (μMegas) with semi-digital 3-threshold readout
 6 λ_l - 48 layers, 2 cm steel absorber

Detectors at ILC INSTR-14, Novosibirsk, February 2014

20

The SiD Calorimeters

- ECAL: Si PIN diodes with hexagonal pads (13 mm²) or MAPS sensors with 50 x 50 μm^2 pixels
 - two longitudinal segments with different absorber thickness, a total of 30 layers with tungsten absorbers
 - ASIC directly bonded to Si wafer to reach thinnest possible active layers, ≤ 1.25 mm

The SiD Calorimeters

- ECAL: Si PIN diodes with hexagonal pads (13 mm²) or MAPS sensors with 50 x 50 μ m² pixels
 - two longitudinal segments with different absorber thickness, a total of 30 layers with tungsten absorbers
 - ASIC directly bonded to Si wafer to reach thinnest possible active layers, ≤ 1.25 mm
- HCAL: Digital calorimeter with 1 x 1 cm² cells, using RPCs, double GEMs / thick GEMs, µMegas, scintillator tiles with SiPMs and analog readout also considered
 - 4.5 λ_l thickness 40 layers with 1.9 cm steel

1-glass RPC prototype

Forward Instrumentation

- Forward instrumentation ($\cos\theta > 0.99$) important for luminosity monitoring
 - LumiCal measurement of the integrated luminosity using small-angle Bhabha scattering better than 10⁻³
 - BeamCal measurement of the instantaneous luminosity from beamstrahlung pairs on the 10% level per BX
 - Both serve to increase detector hermeticity
 - Require rad hardness: Si sensors in LumiCal, GaAs or CVDDiamond in BeamCal

Magnet, Yoke & Muon System

- The solenoid is one of the key components of any experiment -For ILC detectors we can build on the CMS experience
 - For ILD: Similar field, max. 4T, radius ~ 50 cm larger, for SiD higher field, somewhat smaller radius

- The muon system: instrumented return yoke
 - Identification and tracking of muons
 - Tail catching for the calorimeter system

A key task of the yoke: Reduce the stray field of the solenoid to allow maintenance on one detector while the other is in operation

The Detectors in the Collider

- Current concept: Two detectors share one interaction region -Exchange by push-pull on air-cushioned platforms
- Requires well designed integration & services
- Imposes strict requirements on stray fields of solenoids

Detectors at ILC INSTR-14, Novosibirsk, February 2014

Frank Simon (fsimon@mpp.mpg.de)

The Detectors in the Collider

- Current concept: Two detectors share one interaction region -Exchange by push-pull on air-cushioned platforms
- Requires well designed integration & services
- Imposes strict requirements on stray fields of solenoids

NB: Here two detectors do not increase the total integrated luminosity - The gain is in systematics, risk reduction (and sociological aspects!)

Performance ...

- Studies based on full detector simulations in quite a few cases key performance parameters have been validated with prototypes in test beams
 - energy resolution & PFA performance (calorimeters), tracking, spatial resolution of pixel detectors,...
 more in other talks throughout this conference!

Performance ...

- Studies based on full detector simulations in quite a few cases key performance parameters have been validated with prototypes in test beams
 - energy resolution & PFA performance (calorimeters), tracking, spatial resolution of pixel detectors,...
 more in other talks throughout this conference!

Global performance - just one example: PFA in ILD

... and Cost

- First estimate of cost (excl. labor) for the some of the more expensive systems already quite detailed (NB: on some items the cost models of ILD and SiD are different)
- ► Clearly reflects the design for PFA: ~ 50% of the total cost is in the calorimeters
- Shows SiD optimization with cost-effectiveness in mind

Studies to evaluate the cost and performance impact of parameter changes are ongoing

Summary

- The physics program at ILC requires highly performant detector systems:
 - Flavor tagging b, c and light jets
 - Precise momentum measurement
 - Excellent jet energy resolution a factor of two better than state of the art
- ILD and SiD meet these challenges with:
 - low-mass, small pitch pixel vertex trackers
 - high resolution main trackers, either all silicon or silicon + TPC
 - highly granular "imaging" calorimeters

Summary

- The physics program at ILC requires highly performant detector systems:
 - Flavor tagging b, c and light jets
 - Precise momentum measurement
 - Excellent jet energy resolution a factor of two better than state of the art
- ILD and SiD meet these challenges with: ●
 - low-mass, small pitch pixel vertex trackers
 - high resolution main trackers, either all silicon or silicon + TPC
 - highly granular "imaging" calorimeters

Key issues have been demonstrated with prototypes in test beams, and the physics performance has been studies in full simulations

Next Steps: Optimization

- The ILC detector concept have demonstrated their performance for various channels Now: Take a step back and re-examine the design choices:
 - Better understand physics drivers for performance requirements
 - Identify key performance drivers, find possible "breaking points"
 - Reduce cost but without de-scoping of performance goals

Outlook

- Starting now: Optimisation of the detector design Study impact of design choices on physics performance and cost, react to new LHC results
- Prepare for a Technical Design Report by ~ 2018
 - Further demonstration of technologies in beam tests
 - Complete mechanical design
 - More thorough cost estimate
 - ...

after approval: 6 - 8 years for final design, production and installation

Outlook

- Starting now: Optimisation of the detector design Study impact of design choices on physics performance and cost, react to new LHC results
- Prepare for a Technical Design Report by ~ 2018
 - Further demonstration of technologies in beam tests
 - Complete mechanical design
 - More thorough cost estimate
 - ...

after approval: 6 - 8 years for final design, production and installation

The physics program of the ILC is clear and we have the detector technology to do it!

Backup

CONTRACTOR OF STREET, STREET,

Detectors at ILC INSTR-14, Novosibirsk, February 2014

Frank Simon (fsimon@mpp.mpg.de)

Tarbysit

ILD & SiD - Material budget

Detectors at ILC INSTR-14, Novosibirsk, February 2014

Frank Simon (fsimon@mpp.mpg.de)

31

