

Upgrade of the CMS Muon System with Triple-GEM detectors

Sven Dildick (UGent) On behalf of the CMS GEM Collaboration INSTR2014, 24.02-01.03 2014, BINP (Novosibirsk)

28/02/2014

Outline

- CMS Muon System
- The GEM project
- Impact on trigger and physics
- Detector prototype development and tests
- DAQ and electronics
- Integration into CMS
- Summary and outlook

The CMS Muon System after LS1

- CMS detector: designed to detect and reconstruct muons with superb
 precision
- The CMS Muon system uses 3 different types of detectors
 - Resistive Plate Chambers : triggering
 - Cathode Strip Chambers and Drift Tubes: tracking and triggering
- After LS1 CMS will be instrumented with RPCs and CSCs up to |eta| < 1.8
- Phase-II CMS needs handles to cope with high rate between LS2 and LS3
 - Tracking trigger won't be installed until ~2022
- High eta region has vacancies after LS1: good opportunity to install new detectors
 - Current CMS RPC design is not able to sustain with the high rates

28/02/2014

Sven Dildick - Instr2014

- High eta region requires a **new technology** that satisfies requirements:
 - High rate capability O(MHz/cm²)
 - Good time resolution: triggering
 - Good spatial resolution O(100µm): tracking

3

Evolution of LHC and CMS

28/02/2014

The CMS GEM project

 Install double-layered triple-GEM chambers in the presently vacant positions in front ME1/1 (after LS2) and ME2/1 (after LS3), and a 6-layered triple-GEM near-tagger behind the future shortened hadron callorimeter (after LS3)

Evolution of LHC and CMS

28/02/2014

The CMS GEM project

GE1/1: baseline detector for GEM project

- 1.55 < |eta| < 2.18
- 36 staggered super chambers, super chamber = 2 chambers, each chamber spans 10°
- Several prototype designs with different number of eta partitions
- Major conclusion from ECFA 2013: short and long super chambers for maximum coverage in pseudo-rapidity

GE2/1: station 2 upgrade

- 1.6 < |eta| < 2.45
- Chambers spanning 20°
- Geometry details to be finalized
 - Looking into possibility of installing 2 rings of double-layered triple GEMs (1 ring with short, 1 ring with long super chambers)

• **ME0**: near-tagger to be installed behind new HCal

- 6-layers of triple-GEM detectors
- 20° super chambers
- 2.0 < |eta| < 3.5
- Geometry is yet to be finalized

28/02/2014

Sven Dildick - Instr2014

Short

Gas Electron Multipliers

- Micro-pattern gaseous detector
 - Polyimide foil (50µm thick) in between 2 conductive layers, usually copper (5µm thick).
 - Foil is perforated with (bi)conical holes in a hexagonal pattern (hole diameter 70µm, pitch 140µm)
- Foils are developed using PCB manufacturing technique
- Cost-effective industrial production of large areas ~1m x 2m
- Excellent spatial and time resolution (O(100)µm, ~5ns)
- Efficiency ~98%
- High rate capability ~1MHz/cm²
- Radiation hardened
- Non-flammable gas mixture: Ar/CO₂/CF₄ (45/15/40)

Excellent material to build triggering and tracking detector

28/02/2014

GEMs at other CERN experiments

TOTEM

- Triple-GEM with Ar/CO₂ mixture (70/30) located at $5.3 \le |\eta| \le 6.5$
- Rate ~ 12MHz/cm² (1000 x GE1/1 in CMS Phase-II)
- No aging effects due to polymerization
- No change in material properties
- COMPASS
 - Triple-GEM with Ar/CO₂ mixture (70/30)
 - Rate ~2.5MHz/cm² (500 x GE1/1 in CMS Phase-II)
 - No decrease in gain, efficiency, or deterioration of energy resolution or time resolution up till now

LHCb

- Triple-GEM with Ar/CO₂ mixture (45/15/40)
- Rate ~500 kHz/cm² (50 x GE1/1 in CMS Phase-II)
- No decrease in performance after 10 LHCb years

Global Muon Trigger rate at HL-LHC

- Scattering of soft muons in the iron yoke flattens the trigger rate curve
 - Promotion of low-p_T muon to high-p_T
- Additional muons stations can help to reduce the trigger rate
- Efficiency of single muon trigger at 20 GeV is about 85% in high eta region

- Additional GEM detector in front of ME1/1 can measure muon bending angle in magnetic field.
- By letting the GEM and CSC talk to each other we get a powerful new tool
 - Rate reduction with GEM-CSC bending angle
 - Stub efficiency recovery in ME1/1 CSC TMB

GEM-CSC bending angle

- 36 GEM chambers in GE1/1. Each chamber spans 10 degrees and is covered with 384 strips (strip ~1 mrad)
- For trigger purposes: group 4 strips in OR'ed collection: GEM-CSC trigger pad
- Nearly 100% efficiency to reconstruct trigger pad
- GE1/1-ME1/1 bending angle provides clear separation of hard and **soft muons** (~4 mrad, dX ~8mm)
 - GEM-CSC bending angle power in ME0 is of the same order

Sven Dildick - Instr2014

GE2/1 has much less bending angle power

GEM pad matching

Reconstruction efficiency

0.8

0.6

0.4

0.2

28/02/2014

рт

20 GeV

GEM chambers in simulation

1.64<|η|<2.14

ECFA2013

0.025

 $\Delta\phi(GEM,CSC)$ [rad]

0.02

0.03

Impact on trigger rate: results for prototype ILT

- Typical trigger rate reduction for 20GeV muon: 20kHz/cm2 to 2kHz/cm2
- Preliminary results with not fully yet optimized trigger algorithm

CSC trigger logic and shortcomings

CSC chamber in ME1/1

- 6 layers of anode wires in wire groups (slanted due to magnetic field) and cathode strips
- ME1/b (top), ME1a (bottom) with different readout for strips
- CSC stub = combination of anode wire group stub (ALCT) with cathode strips stub (CLCT) in the CSC trigger mother board
- CSC stubs are sent upstream to be used in the CSC track-finder as track segments
- Known issues with current CSC trigger logic
 - Unable to reconstruct a CLCT (insufficient hits to pass trigger requirement)
 - Important effect in chamber edges and the ME1/1a-ME1/1b overlap region
 - Multiple CLCTs are reconstructed for a given ALCT
 - Fake stubs are sent upstream
 - CLCT timing is off

28/02/2014

Sven Dildick - Instr2014

Strips

GEM triggering options

GEM triggering options

Efficiency recovery in ME1/1 CSC and TrackFinder

GEM-CSC integrated local trigger

- Generalize the notion of an ME1/1 stub: any 2/3 of ALCT, CLCT and GEM pad
- Many options to improve stub reconstruction efficiency
 - Unable to reconstruct ALCT or CLCT → replace by GEM pad
 - Fake stubs → Use GEM information to figure out which is the true one
 - Incorrect stub timing → If there is GEM coincidence, use GEM timing
- Requires change in the CSC stub dataformat to TrackFinder
 - New dataformat has been finalized and blessed by electronics experts
- Preliminary studies show that LCT reconstruction efficiency goes up from ~90% to ~96% in high pile-up scenario (PU140)

Standalone GEM trigger

- Combine information from CSC integrated stubs, GEM coincidence pads and RPC stubs in single algorithm to reconstruct muon tracks in high eta region
- Studies ongoing how to use GEM pads in current CSC TrackFinder and future Muon TrackFinder

28/02/2014

GEM Physics benefit

- Discovery of Standard Model like scalar boson in 2012.
- Carry out precision measurements of Higgs couplings.
- CMS Muon system is critical:
 - $H \rightarrow WW/ZZ$ are key to precision on HVV boson couplings
 - WH $\rightarrow\mu\nu$ tt is key for measuring fermion couplings H_f.
 - Muon + hadronic tau is most sensitive.
- Need good muon triggering with maximal coverage.
 - GEM+CSC results in ~20% increase in acceptance.

- $H \rightarrow ZZ \rightarrow 4\mu, H \rightarrow 2\mu$
- $Z' \rightarrow \mu\mu, W' \rightarrow \mu\nu$
- μ* → μγ
- B_s → μμ
- Start building the physics case for GE1/1 TDR and Muon Phase-II TP

Small GEM prototypes

- 10 x 10 cm² triple-GEMs
- 1D or 2D readout configuration
- 128 of 256 channels
- Several prototypes:
 - Double-mask triple-GEM ("timing GEM")
 - Single-mask triple-GEM
 - "Honeycomb" triple-GEM (efficiency ~70%)

GEM project achievements

Performance

- Detector efficiencies ~98%
- Time resolution ~4ns
- Spatial resolution of about 290µm with VFAT2 (digital) and <110µm APV (analog) readout chip
- Operation of GEMs in magnetic field
- Gas mixture Ar/CO₂/CF₄ (45/15/40)
- Rate capability ~10⁵Hz/cm²
- Good performance in test-beams at CERN SPS and FNAL

Technology and assembly

- Validation of single-mask technology
- Production of large area GEM foils (GE1/1-type)
- NS2 technique for GEM assembly

Integration

Dummy GEMs for trial installation

Large GEM prototype evolution

GE1/1-I 2010

- 1st 1m-class type
- 2 x 4 readout sectors
- Spacers
- All glued

GE1/1-II

2011

1st GE1/1

3 x 8 readout

type

sectors

Spacers

All glued

GE1/1-III 2012

- NS2 technology
- Outer frame still glued to drift
- ued Gap sizes: Sven Dildick - Instr2014

GE1/1-IV 2013

- Complete mechanical construction
- 6 types produced at several sites

GE1/1-V 2014

- Final design
 - Optimal acceptance in eta and phi
- Short+long version

28/02/2014

GEM foil stretching evolution

Thermal Stretching in oven (CERN)

"Self-stretching" without spacers (CERN)

In-situ thermal stretching (FI. Tech)

Heated & Stretched

16 125W heat lamps stretch foil at 35°C

Easy to re-open detector for repair

GE1/1 aging tests

- Long lifetime for GE1/1 is expected
 - Long-term operation in LHCb, COMPASS, TOTEM
- Aging tests ongoing at CERN GIF and GIF++
- Monitoring performance with integrated charge collection
 - Ensure long-term operation in CMS
 - Understand (any) material degradation due to radiation
 - Understand ageing origin (if any) and propose solutions

Paper with recent results in preparation

28/02/2014

Step 1: preparation of drift board

GE1/1 chamber construction

- Equip PCB with metallic inserts and HV probes
- Fix outer frame to PCB with guiding pins
- **Step 2**: preparation of GEM stack
 - Place 1st frame on support
 - Place GEM1 + second frame
 - Place GEM2 + 3rd frame
 - Insert stretching nuts

- Place GEM3 + 4th frame
- Step 3: installation and stretching
 - Remove the guiding pins
 - Place stack on drift plane
 - Check electrical contacts & HV divider
 - Close chamber with readout PCB
 - Insert gas in- and outlets

28/02/2014

GE1/1 chamber construction

- **Step 1**: preparation of drift board
 - Equip PCB with metallic inserts and HV probes
 - Fix outer frame to PCB with guiding pins
- **Step 2**: preparation of GEM stack
 - Place 1st frame on support
 - Place GEM1 + second frame
 - Place GEM2 + 3rd frame
 - Insert stretching nuts
 - Place GEM3 + 4th frame
- **Step 3**: installation and stretching
 - Remove the guiding pins

Quality control

- Step 1: Check quality of components on receipt
 - Visual and electrical inspection of drift and readout PCB
 - Cleaning to remove dust on epoxy frames
- **Step 2:** Regularly check and clean GEM foils during assembly
- Step 3: Post-assembly testing
 - Test HV connections and readout strips
 - Check for gas leaks

Step 4

- Calibrate assembled chamber with MINI-X
- Measure charge per cluster for every readout strip with APV+SRC
- Calculate effective gas gain for each sector

Step 5&6

- Test chamber in cosmic stand to determine efficiency, Δ t and Δx
- Install and test electronics (VFAT3+uTCA)

28/02/2014

Quality control

- Step 1: Check quality of components
 - Visual and electrical inspection of drift and re
 - Cleaning to remove dust on epoxy frames
- **Step 2:** Regularly check and clean GEM
- Step 3: Post-assembly testing
 - Test HV connections and readout strips
 - Check for gas leaks

Step 4

- Calibrate assembled chamber with MINI-X
- Measure charge per cluster for every readout strip with APV+SRC
- Calculate effective gas gain for each sector

105.4 / 19 520.6 ± 9.1 3636 ± 11.2

- Test chamber in cosmic stand to determine efficiency, Δ t and Δx
- Install and test electronics (VFAT3+uTCA)

28/02/2014

Finally: Assemble the GE1/1 superchambe

DAQ and electronics

VFAT₃

- VFAT3 was chosen over GdSP for GE1/1-V electronics
- VFAT3 analog discriminator will use CFD to correct time walk
- VFAT3 STT version (Separate Tracking & Triggering)
- GEM OptoHybrid contains FPGA performing "concentrator" and driving optical link @ 3.2Gbps; FPGA programming via the GBT

Integration into CMS

- Ongoing investigations at P5 by technical crew
 - Optimize cable and fibre routing, and layout of cooling pipes
 - Racks for electronics equipment and powering (HV/LV)
- GE1/1 super chamber dummies produced (May 2013)
 - 1st trial installation in Summer 2013
- New dummies according to updated geometry (Jan 2014)
 - 2nd trial installation in March 2014

Assembled GE1/1 dummies

Dummies with short and long chambers²⁰¹

28/02/2014

Trial installation Summer 2013

Conclusions and outlook

- R&D started nearly 5 years ago (2009) within the RD51 Collaboration
- Triple-GEM technology is mature and satisfies trigger and physics needs for CMS in the post-LS2 era
- Partial approval for installation of GE1/1 was obtained Summer 2013
- Full approval for installation of GE1/1 was obtained at ECFA workshop (Autumn 2013)
- A Technical Design Report for GE1/1 is in preparation (October 2014)
- Production of the finalized GE1/1-V detectors is scheduled for 2014-2015
- During the LHC Year-End Technical stop of 2016-2017, two GEM superchambers demonstrators will be installed in YE1/1

28/02/2014

Backup slides

GEM-CSC bending angle

ME0-ME1/a

GE2/1-ME2/1

Bending angle in YE1-4

 Bending angle power of typical 10 GeV muon in endcap stations 1-4 between 2.14< eta < 2.4

Trigger rate plots for >=3 stubs

- Typical trigger rate reduction for 20GeV muon: 20kHz/cm2 to 1kHz/cm2
- Preliminary results with not fully yet optimized trigger algorithm

28/02/2014

Muon reconstruction with GEMs in CMS

- Realistic digitization and local reconstruction from a digital R/O are in place
- Implementation of GEMs into the seeding in ongoing (further improvements can come from this point)
- GEM recHits are successfully used in the STA muon fit, consequently GEM recHits are also involved in the GLB muon reco
- Special reconstructions: implementation of GEMs into the TeV muon special refits ongoing (important since we have seen improvements at high pT in the charge mis-ID probability and pT measurement)
- TO-DO: introduction of GEMs into the Tracker muon reco and study of the impact on the muon ID
- Recent achievement: Incorporated the full simulation chain for GE2/1 and ME0 in the CMS software (GE1/1 was already working)
 - Start producing signal and background samples for Muon Phase-II technical proposal
 - Start muon reconstruction efficiency studies with ME0