

Status of the CMS Muon system Guenakh Mitselmakher University of Florida

Guenakh Mitselmakher Novosibirsk, February 26, 2014

LHC performance, CMS pp-collisions

2010-03-30 11:21 to 2012-12-16 20:49 UTC Data included 25 ŝ **Fotal Integrated Luminosity** 20 20 15 15 10 10 5 5 , Dec Date (UTC) CMS Average Pileup, pp, 2012, $\sqrt{s} = 8 \text{ TeV}$ 45 Recorded Luminosity (pb^{-1} /0.04) < u > = 2140 40 35 35 30 30 25 25 20 20 15 15 10 10 5 5 0 NO 20 15 35 20 25 30

Mean number of interactions per crossing

CMS Integrated Luminosity, pp

pp collisions in CMS 2010: ~44 pb⁻¹ @ 7 TeV 2011: ~6 fb⁻¹ @ 7 TeV 2012: ~23 fb⁻¹ @ 8 TeV

In 2012: reached ~ design luminosity but at 50 nsec bunch spacing (instead of 25 nsec). pilep > design

The Compact Muon Solenoid

Particle identification in CMS

CMS Muon chambers

- Robust, efficient and redundant muon system design
- 4 stations interleaved with iron return yoke
- Cylindrical barrel region:
 - 4 coaxial stations.
 Chambers are grouped into 5 wheels of 12 azimuthal sectors
 Equipped with Drift Tubes (DT) and Resistive Plate Chambers (RPC)

- Planar endcap region:
 - 4 planar stations (4th station completion in 2014)
 - Equipped with a Cathode Strip Chambers (CSC) and RPC

CMS Detector Requirements for the Muon System (TDR)

Primary Functions

- Muon identification;
- Muon momentum measurement;
- Muon triggering;

- Muon momentum resolution over a wide range of momenta in the region $|\eta| < 2.5$:

- Muon system 8–15% at 10 GeV/c, 20–40% at 1 TeV/c;
- Tracker and muon system 1–1.5% at 10 GeV/c, 6–17% at 1 TeV/c;
- A good dimuon mass resolution (1% at 100 GeV/c²);
- Charge misassignment less than 0.1% at muon $p_T = 100 \text{ GeV/c}$;

• Trigger on single- and multi-muon events with well defined thresholds from a few to 100 GeV/c;

Drift Tubes – DT $|\eta| < 1.2$ Reconstruction and Triggering

Barrel part - 5 wheels; 4 stations per wheel; 12 sectors per wheel;

DT chamber 8 layers in the (r-φ) plane 4 layers in the (r-z) plane

spatial resolution (r- ϕ) ~ 100 μ m (depends on the muon impact angle) (r-z) ~ 150 μ m

Drift cell - $42 \times 13 \text{ mm}^2$; Anode wire - d = 50 µm, HV = +3600 V; Gas mixture - 85% Ar, 15% CO₂; Drift velocity ~ 55 µm/ns; Max drift time ~ 400 ns;

2 Cathode strips – HV = -1.8 kV; 2 Electrode srips – HV = +1.8 kV

Length ~ 2.5 m; Transverse size – 1.9 m (MB1) – 4.1 m (MB4)

Cathode Strip Chambers – CSC
Reconstruction and Triggering $0.9 < |\eta| < 2.4$

4 stations per endcap

spatial resolution
(r-φ) 75 (ME1/1) - 150 μm
(depends on the muon impact angle)

6 layers per chamber;80 cathode strips per layer :

Anode wires: ME 1/1: d = 30 μm; spaced by ~ 2.5 mm; HV 2900 V; All the other chambers: d = 50 μm; spaced by ~3.5 mm; HV = 3600 V;

Groups of 5 to 16 wires, with widths from 16 to 51 mm, which limits the position resolution in the wire coordinate direction.

Gas mixture: 50% CO₂, 40% Ar, and 10% CF₄

Chamber length – from 1.7 m to 3.4 m

Resistive Plates Gas gap Gas mixture Detecting copper strips Avalanche mode Trigger Operating HV Linseed oil treatment Bakelite with bulk resistivity (1 - 2). $10^{10} \Omega.cm$ $2 mm \pm 20 \mu m$ wide 95,2% $C_2H_2F_4$ (Freon), 4,5 % iC_4H_{10} (Isobutan), 0,3 % SF_6 pitch 2.3 – 4.1 cm (barrel); 1.7 – 3.6 cm (endcap) ability to work at a high rate of ionizing particles ~ 1 kHz/cm² time resolution < 2 ns – bunch crossing assignment 9.4 - 9.8 kV

Design Parameters of the Muon system

Muon subsystem	Drift Tubes (DT)	Cathode Strip Chambers (CSC)	Resistive Plate Chambers (RPC)
Function	Tracking, p _T trigger, BX ID	Tracking, p _T trigger, BX ID	p _T trigger, BX ID
η range	0.0 - 1.2	0.9 - 2.4	0.0 - 1.6
№ of stations	4	4 (no ME4/2 ring)	Barrel 4; Endcap 3
№ of layers per station	r-φ:8, z:4	6	2 in RB1 and RB2; 1 elsewhere
№ of chambers	250	468	Barrel 480; Endcap 432
№ of channels	172000	Strips 220000; Wire groups 183000	Barrel 68000; Endcap 41000

CMS Subsystems performance: reliability data

Fraction of working channels > 98%

Guenakh Mitselmakher

Novosibirsk, February 26, 2014

Muon performance : DTs

- Hit resolution ~250 um
- Good DT Local Trigger efficiency (including Bunch Crossing identification BX-ID)
- DT Background measurement

 In agreement with neutron hit rate simulations

Muon performance: CSC

Muon performance: RPC

RPC spatial resolution (driven by the strip size): **Barrel:** $\sigma = 0.81$ cm inner, to $\sigma = 1.32$ cm outer station. **Endcap:** $\sigma = 0.86$ cm in the inner, to $\sigma = 1.28$ cm in the outer ring

Muon triggering

<u>All Muon detector systems (DT, CSC, RPC) participate in Triggering:</u> <u>Level 1 (hardware) and High Level Trigger (software algorithms)</u>

Level 1 trigger (L1) Local triggers:

DT local trigger (DTLT):

Up to 2 trigger segments on the x-y plane (φ view) and 1 in z direction (θ view); Tracker finder – collects and combines the DTLT information, forms the muon track and assigns the p_T value;

CSC local trigger (CSCLT):

- Muon track segments are found separately in the nearly orthogonal cathode and anode planes. Up to 2 cathode and 2 anode local track projections can be found in each chamber at any BX.
- The local track projection are combined into 3D tracks by requiring a timing coincidence in the trigger electronics device.

Muon triggering

<u>RPC – PAttern Comparator Trigger (PACT)</u>

Trigger processors compare the observed hit pattern within a segment with predefined patterns corresponding to certain p_T values.

If the observed hits match multiple patterns, the muon candidate with the highest quality and highest p_T is selected.

CMS L1 Trigger: Muons + Calorimeters

Trigger	Threshold (GeV)	Rate (kHz)	Physics
Single e/γ	20	13	Higgs, SM, EXO
Double e/y	13,7	8	Higgs, SM, SUSY, EXO
Single µ	14 (η <2.1)	7	Higgs, SM, SUSY, EXO
Double µ	10, 0	6	Higgs, SM, EXO
e/γ + μ	12, 3.5	3	SM, SUSY, EXO
μ + e/γ	12, 7	1.5	SM, SUSY, EXO
Single Jet	128	1.5	SM, EXO
Quad Jet	36	3.5	SM, SUSY, EXO
HT	150	5	SUSY, EXO
ET ^{miss}	36	8	SUSY, EXO

- Typical L1 trigger table for running in 2012
- Main single and multi-object triggers shown
- Rates reported for luminosity ~6.6×10³³

Guenakn iviitseimakner

NOVOSIDITSK, FEDRUARY 20, 2014

Muon L1 trigger performance: single muon

Rate improvements in 2012:

- CSCTF tighter Pt assignment
- Improvement in Global Muon Trigger pt merging
 - About 50% rate reduction, for few % efficiency cost

High Level Trigger (HLT) performance

CMS di-muon mass spectrum divided into different HLT selections
Muon triggers for Heavy Flavor exploits vertex, mass and momentum constraints

Muon momentum resolution

Muon performance: ID stability vs pilup

CMS Average Pileup, pp, 2012, $\sqrt{s} = 8$ TeV

Muon ID vs pileup

Muon performance: isolation (Particle Flow algorithm)

•Charged particles well separated in large tracker volume & 3.8T B field •Excellent tracking, able to go to down to very low momenta (~100 MeV) •Granular electromagnetic calorimeter with excellent energy resolution •In multijet events, only 10% of the energy goes to neutral (stable) hadrons

Muon Isolation efficiency vs Pt (Particle Flow algorithm)

Higgs peak in 4leptons decay channel

Higgs mass distribution, including per-event errors: 4μ events have smallest invariant mass errors

A challenge: 4 Leptons selection efficiency

- Almost 50% of leptons
 from low mass Higgs →4l
 have pT less than 10 GeV
 - A challenge for the lepton selection in the analysis
- Control of background rate is difficult at low pT
- Control of lepton selection efficiencies is also a challenge at low pT

Higgs candidate event in CMS

LHC schedule

Lucio Rossi and Oliver Brüning (CERN): HL-LHC

Krakow symposium, Sep 2012

https://indico.cern.ch/contributionDisplay.py?contribId=153&confId=175067

LS1: Detector consolidation

Partially move DT electronics from detector to cavern and redesign in uTCA technology.

Upgrade ME1/1 electronics.

LS2: Anticipated phase-2 upgrades

Installation of GE1/1 Combined CSC+GEM trigger

LS3: HL upgrades

Muon trigger: Additional detectors in forward region of all 4 stations Rapidity extension of tracker, calo, muon to $|\eta|^{4}$

Redesign of DT on-chamber electronics

Ongoing Muon Upgrades (2013-2014)

Trigger performance: significantly lower threshold **4** 700 for same rate (wheel 0) CSC and RPC: ME4/2 (1.25<|η|<1.8) More hits, lower rates 500 CSC: ME1/1 (2.1<| η |<2.4) new digital boards and 400 trigger cards : higher strip granularity **Electronics** reliability 300 DT: new trigger readout board and relocation of 200 sector collector from UXC55 to USC55 (more 100 accessible, using new optical links)

ME-1/1 On-Chamber Electronics Upgrade

- Remove triple-strip-ganging in ME1/1a region (5 \rightarrow 7 CFEB)
 - Suppress mis-measured muons
 - Reduces ambiguities due to combinatorics
- New anode readout board
 - − FPGA Virtex E → Spartan 6
 - New, faster FPGA to handle rates
- New Low Voltage Distribution Board and Low Voltage Mezzanine Board (monitoring,control)

Innermost ME1/1 CSCs Electronics Upgrade

- All ME-1/1 CSC Chambers have been removed from and taken to the SX5 (surface building)
- On-chamber elecronics refurbished and retested
 - The old electronics already used for the ME-4/2 system

CMS RPC upgrade: 4th Encap station construction QC-4 & Super Module Assembly at 904, CERN

CMS views (September 2013)

Conclusions

- CMS Muon system performed very reliably in Run 1, meeting specifications for efficiency, precision and triggering capability
- Played a key role in many physics studies, including the Higgs discovery
- Currently undergoing upgrades for Run 2, on schedule . Long term upgrades planned (see also other talks at this conference)

Robust muon triggering and identification are major discovery drivers at the LHC

HL affects muon system performance. Forward region $|\eta| \ge 2.0$ especially challenging.

- Rates up to MHz/cm² and growing with η
- **Reduced resolution and longevity issues** •
- **Exceeds** capabilities of existing electronics ۲
- p_T mis-measurements and multiple scattering in iron yoke cause rate flattening

Focus on maximizing the potential of large datasets to be collected at HL-LHC

- Maintain current performance (η, p_{T})
- Seek acceptance gains where possible

Phase-2 Muon Trigger Challenges

Not loosing trigger coverage is the key

- p_T mis-measurement drives trigger rate. Increasing threshold would not help.
- Level-1 track trigger helps, but has reduced performance in high-η "corner"

Phase-2 objectives:

- Increase purity, reduce p_T mismeasurements
- 2) Sharpen trigger turn-on
- Keep trigger threshold even at HL (Higgs physics → relatively soft leptons, e.g. H2Tau)

Large rate reduction using bending angle in forward region (already done in barrel)

- Need good spatial resolution and rate capability
- Larger lever arms using new detectors and existing CSC chambers in the same station
- Must measure bending angle in station 1. Else radial B-field and multiple scattering quickly diminish discrimination.
- Expect x5-10 rate reduction with new detectors.

Impact of CMS Trigger Upgrade on Muon Electronics

Concept of tracking trigger impacts needed latency and rate Level 1 Latency from 3 μ s \longrightarrow 10 μ s Level 1 Rate from 100 kHz \longrightarrow 1 MHz

L1 rate needs replacement of the DT on-chamber electronics

Another argument: electronics is old. Wearout failure may increase

Upgrade of DT on-chamber electronics

Present Minicrates

- Highly integrated and complex system
- Many boards with various ASICs for specific tasks
- Trigger primitive generation performed inside each chamber
- Filtered information sent to counting room

Phase-2 Minicrates

- On-chamber electronics performs time digitization of all chamber signals
- Digital information sent through optical link
 to the counting room
- Complexity is brought into the counting room

Triple GEM Detectors for CMS

GEM foil using PCB manufactering techniques. Large areas ~1m x 2m to be developed. Several large-size prototypes assembled and tested in testbeams.

Smaller size GEM detectors operate e.g. in LHCb

For safe operation and high amplification use 3 layers to form a triple GEM.

RPC Endcap performance

RPC Chamber performance: cluster size

Higgs →4I : Signal/Background ratio ~ 2:1 observed: 25 events total (S+B)

For 121.5 < m4l < 130.5 GeV

	4e	4μ	2e2µ
H(126) expected	3.0	6.7	8.9
ZZ expected	1.2	2.7	3.5
Z+X & top expected	0.6	0.5	0.9
Total Bkg	1.8	3.2	4.4
Signal+Bkg expected	4.8	9.9	13.3
Observed	5	8	12