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Requirements for the luminosity measurement
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Matching the precision potential of linear colliders

Integrated luminosity

Permille precision required to match
the precision of the most planned
cross section measurements

Luminosity spectrum

Requirements quantified per case

Top-pair threshold scan: peak
width uncertainty below 20%
required
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Measurement principle and instrumentation
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Low-angle Bhabha scattering

High cross-section → good statistics

Theoretically well known → precise calculation of xs possible

Relative uncertainty achieved at LEP ≈ 0.6× 10−3

Experimental signature: High-energy electrons at low angles in
coincidence on both sides of the IP

Angular and energy selection

L =
NBh(Ξ(E

lab
1,2 ,Ω

lab
1,2))

σBh(Z (ECM
1,2 ,ΩCM

1,2 ))

Ξ – Selection function in the experiment
Z – Selection function for the cross-section integration
E1,2 – Energies of the final particles
Ω1,2 – Energies of the final particles

Precision depends critically on precise application of Ξ and Z
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The luminosity calorimeter

Twin Si-W sampling calorimeters

30/40 layers (ILC/CLIC)

At ca. 2.5 m from the IP, centered
around the outgoing beam

Segmented in r , φ

Molière radius 11 mm

Precise reconstruction of the 4-momenta
of the showers

Fiducial volume in the angular range
41–67 mrad (ILC) or 43–80 mrad (CLIC)

LumiCal sketch
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Systematic effects in luminosity measurement

S. Lukić, INSTR14, 24.02.2014 Luminosity measurement at the LC 8/18



Outline Requirements Principle and Instrumentation Systematic effects Conclusions

Beam-beam effects at linear colliders

Transverse component of Lorentz force seen
by a bunch scales with the Lorentz factor of
the opposing bunch. At future LC, γ ∼ 1012

“Pinch” effect – strong focusing of the
bunches
Luminosity enhanced
Beamstrahlung emission – energy loss by
individual electrons in the bunch
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Boost of the event CM frame

Beamstrahlung is a random process

Initial electrons often have asymmetric
energy loss

Boost of the CM frame correlated with
the energy loss

Acollinearity of the final particles
increases with the boost, → Bhabha
counting loss O(10%) in the upper
20% of the spectrum

Boost can be calculated from the final
particle angles:

Event-by-event correction for the
effective angular acceptance
Uncertainty after correction below
10−3

S. Lukic et al., JINST 8 (2013), P05008
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Precise luminosity spectrum shape
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2D luminosity spectrum

Use wide-angle Bhabha events

Fit of a luminosity spectrum model as a
function of three observables: Acollinearity
and the energies of both final electrons

Data from the entire detector is used

Excellent reconstruction of the spectrum
shape

Percent-level precision down to 0.5
√
snom

A. Sailer and S. Poss, LCD-Note-2013-008 Reconstructed spectrum
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Precise luminosity spectrum shape
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Electromagnetic deflection (EMD)

Deflection of the final particles by
the EM field of the opposite bunch

Deflection angles typically below
0.1 mrad

Counting bias due to the θ−3

dependence of the Bhabha cross
section

Can be estimated using simulation
of bunch-collision (e.g Guinea-Pig)
with uncertainty of a fraction of
permille due to beam-parameter
uncertainties

EMD deflection angles vs. Bhabha scattering
angle
(C. Rimbault et al, JINST 2 (2007), P09001)

Counting loss due to EMD

Collider ILC 500 GeV ILC 1 TeV CLIC 3 TeV
∆LEMD/L(10

−3) 2.3 1.2 0.5
∆LEMD,corr/L(10

−3) 0.5 0.2 –
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Positioning uncertainties LumiCal vs. IP

dσB

dθ
≈ 32πα2

s

1

θ3

Inner diameter of the LumiCal FV
must be known to better than 4µm

Relative radial offset IP w.r.t
LumiCal precision several 10 µm

Longitudinal distance between the
halves must be known to 100 µm

Laser alignment system for the very forward
calorimeters (IFJ PAN, Cracow)

S. Lukić, INSTR14, 24.02.2014 Luminosity measurement at the LC 13/18



Outline Requirements Principle and Instrumentation Systematic effects Conclusions

Intrinsic reconstruction uncertainties

Clustering with logarithmic weighting
Polar angle bias: ∆θ = 3.2× 10−3mrad

Polar angle resolution: σθ = 2.2× 10−2mrad

Energy resolution: σE

E
= 0.21√

E/GeV

The shower must be fully contained in the calorimeter – definition of
the FV

Energy resolution as a function of the polar angle for the ILC LumiCal
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Uncertainties of the theoretical calculation

LEP precision 0.54× 10−3

At future linear colliders, new effects play a significant role:

Z-boson exchange
Shape of the luminosity spectrum

New Bhabha generator under development at BSU Minsk

Inclusion of small, as well as large angles
Luminosity spectrum
backgrounds
polarization
N...NLO
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Backgrounds

Processes mimicking Bhabha event
signature

Dominant type e+e− → e+e−f f̄

Background to signal cross-section
ratio of the order 10−3

Theoretical calculations for the
correction as yet unavailable.
Precision at LEP: 20% of the
full-size background contribution
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Acoplanarity distribution of the Bhabha signal
and the 4-fermion background detected under
the same conditions

Rejection based on acoplanarity and the
CM energy removes up to 60% of the
background

Final uncorrected background
contribution 2.2× 10−2 at 500 GeV ILC,
or 0.8× 10−2 at 1 TeV ILC
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An early calculation of the total uncertainty at ILC

Source of uncertainty 500 GeV 1 TeV
(10−3) (10−3)

Bhabha cross section 0.54 0.54

Polar-angle resolution 0.16 0.16

Polar-angle bias 0.16 0.16

IP lateral position 0.1 0.1

IP longitudinal position 0.1 0.1

Energy resolution 0.1 0.1

Energy scale 1 1

Beam polarization 0.19 0.19

Correction of angular losses
due to the boost of the CM frame

0.4 0.7

ISR deconvolution 0.4 0.8

EMD correction 0.5 0.2

Physics background (uncorrected) 2.2 0.8

Total 2.6 1.8

H. Abramowicz et al., JINST 5 (2010), P12002
I. Božović-Jelisavčić et al., JINST 8 (2013), P08012
S. Jadach, hep-ph/0306083
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Conclusions

Integrated luminosity precision requirement: 10−3

Significant results towards this goal for the peak of the spectrum

Method for precise luminosity spectrum reconstruction demonstrated

The two measurements can be combined for a precise absolute
luminosity spectrum down to 1/2

√
snom

Open issues:

Precise calculation of the background contribution
Measurement of the tail of the luminosity spectrum (large
acollinearities – must measure at large angles – vulnerable to
backgrounds)
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