HV-MAPS (High Voltage Monolithic Active Pixel Sensors) for the PANDA Luminosity Detector

Tobias Weber for the PANDA collaboration in collaboration with the Heidelberg Mu3e group

INSTR14 25.02.2014

Physics Program

- hadron spectroscopy
- nucleon structure

- hyper nuclei
- hadrons in matter

Measurements at PANDA

- *pp*-formation experiments
 - resonance scans
 - threshold scans

Measurements at PANDA

- *pp*-formation experiments
- production experiments

Measurements at PANDA

- *pp*-formation experiments
- production experiments
- \Rightarrow luminosity measurement

Introduction

Luminosity Detector

- reconstruction of angle of the elastically scattered antiprotons
- four silicon tracker stations
- 400 HV-MAPS in total

HV-MAPS for the PANDA Luminosity Detector

High Voltage Monolithic Active Pixel Sensors

developed by Ivan Perić for the Mu3e Experiment

- 180 nm technology
- ▶ bias voltage (≈60V)
 - 14 µm depletion layer
 - fast charge collection
- radiation tolerant

- leading edge discriminator
- thinable to less than 50 µm

HV-MAPS for the PANDA Luminosity Detector

High Voltage Monolithic Active Pixel Sensors

developed by Ivan Perić for the Mu3e Experiment

- size of 2x2 cm with 80x80 μm pixels
- digital part on one chip side, active area >90%
- readout frequency up to 40 MHz
- LVDS-Link @ 400-800 Mbps

High Voltage Monolithic Active Pixel Sensors

MuPix 4 Prototype

- 40x32 pixels with 80 μm x 92 μm
- column logic on chip
- parallel data readout (no serial link)
- readout and slow control by FPGA-Board

DESY Test Beam

Test Beam by Mu3e group with EUDET-telescope

- electron beam with 3-5 GeV
- measurement of sensor efficiency

DESY Test Beam

Eutel Telescope Software

- reconstruction tool set for test beam
- based on ILC software

HV-MAPS for the PANDA Luminosity Detector

MuPix 4: A Hybrid Strixel

- ➤ timing problem in row address readout ⇒ projection of hits into first two rows
- high noise in few pixels

Telescope Resolution and Alignment

- good alignment in X direction
- offsets in Y direction on telescope planes next to MuPix
- track residuals below 6 μm

Matching Tracks to Hits

General Cuts

- removal of Hits/Tracks in broken rows
- ignore sensor edges

Hit-Track Matching

rectangular cut on hit-track distance $|d_i| < 0.95 \cdot \text{pitch}_i$

Global Efficiency

[▶] efficiency up to 99%

Test Beam Results

Projected Efficiency

- increase of efficiency with row number
- row dependence probably caused by faulty TDAC settings
- average column efficiency above 95%

Sub-Pixel Efficiency

- structure with reduced efficiency at pixel borders
- caused by wrong potential of guard ring

Efficiency with Column Information

hit-track matching using only column information

high efficiency also in broken rows

Test Beam Results

HV-MAPS for the PANDA Luminosity Detector

Efficiency without TDAC tunning

- homogeneous efficiency distribution
- efficiency around 99%

Test Beam Results

PANDA DAQ

- generation of online trigger
- synchronisation of sub-detectors

HV-MAPS for the PANDA Luminosity Detector

Luminosity Detector Frontend Board

- HADES Trigger and Readout Board (M. Traxler et al 2011 JINST 6 C12004)
- 5x Lattice ECP3-150 FPGAs
- main FPGA for UDP/inter FPGA connectivity
- four side FPGAs for sensor I/O

Luminosity DAQ

Summary

- test beam in October 2013
- efficiencies look promising
- problem with row address readout in MuPix 4

Outlook

- next MuPix iteration in March
 - correction of row readout
 - additional amplifier-stage ⇒ improved signal-to-noise
 - better discriminator

Thank you for your attention!

Backup Slides

Abbildung 5.2: Ereignisraten auf der ersten Detektorebene bei $1.5 \frac{GeV}{c}$ Strahlimpuls. ξ 5.4: Ereignisraten auf der ersten Detektorebene bei $1.5 \frac{GeV}{c}$ Strahlimpuls.

Antiprotonen Impuls $\left[\frac{GeV}{c}\right]$	Benutzter Wert	Rate [kHz]
1.5	Sensor 1	183, 2
1.5	Sensor 3	19, 0
15.0	Sensor 1	40, 0

Ebene	Seite	Sensor	Dosis [Gy $0.795s$]	Dosis [Gy a]
1	vorn	3	$6.64 \cdot 10^{-5}$	1317
1	vorn	1	$38.5 \cdot 10^{-5}$	7636
4	hinten	3	$16.4\cdot 10^{-5}$	3253
4	hinten	1	$159.4\cdot10^{-5}$	31615

Radiation doses

Tabelle 4.4: Maximal deponierte Dosis be
i $1.5\frac{GeV}{c}$ aus der Simulation und extrapolierte Dosis für ein Betriebsjahr.

Ebene	Seite	Sensor	Dosis [Gy $1.6s$]	Dosis [Gy a]
1	vorn	3	$6.98\cdot 10^{-5}$	688
1	vorn	1	$7.19\cdot10^{-5}$	709
4	hinten	3	$20.2\cdot 10^{-5}$	1990
4	hinten	1	$18.7\cdot10^{-5}$	1843

 \rightarrow should not be an issue.