

LHCb VELO Performance and Radiation Damage Instrumentation for Colliding Beam Physics 2014

Tim Head for the LHCb collaboration

CERN

25 February 2014

The LHCb Detector

- LHCb is a single-arm (2 < η < 5) spectrometer at the LHC
 - Precision beauty and charm physics: CP violation, rare decays, heavy flavour production
- Time-dependent analyses require good time resolution: \sim 40 fs
- Efficient trigger requires precise impact parameter measurement Tim Head (CERN) LHCb VELO Performance and Radiation Damage 25 Feb

The LHCb Detector

- Vertex Locator (VELO) surrounds the interaction point
- Made of two halves which can open and close
 - retracted during injection, closed during data taking

The Vertex Locator

- 88 silicon strip sensors with R- ϕ layout
- First active strip at 8.2 mm
- Evaporative CO_2 cooling, each module produces ~ 16 W of heat
- In vacuum, separated from LHC by 300 μm thick foil

Tim Head (CERN)

Sensor Layout

- Two sided, semi-circular microstrip sensors
- One R and one ϕ layout per module
- $300 \,\mu m$ thick n+-on-n sensors
 - two n+-on-p
- Strip pitches from 40 to $120\,\mu m$
- Second metal layer = routing lines

Velo Performance

Signal over Noise

- Typical noise around 1.6-2 ADC counts
- Signal to noise > 19 (R) and > 21 (ϕ) strips
- Fit Landau convolved with Gaussian to ADC count distribution to get MPV of clusters/noise

IP and PV Resolutions

Primary vertex

Excellent spatial resolution down to 4 µm

For 25 track vertex: $\sigma_x = \sigma_v = 13 \,\mu\text{m}, \, \sigma_z = 69 \,\mu\text{m}$

Well understood in data and simulation!

Tim Head (CERN)

LHCb VELO Performance and Radiation Damage

 $\sigma_{\rm IP} = 11.6 + 23.4/p_T \,\mu{\rm m}$

Radiation Damage

The Challenge

- Close to the beam \rightarrow high particle fluence
- Irradiation highly non-uniform in a single sensor
 - difference of over an order of magnitude
- Fluence profile changes as function of z-position

Leakage Currents

• Predicted leakage currents vs time in good agreement with observation

- typically increase by $1.9 \,\mu\text{A}$ per $100 \,\text{pb}^{-1}$, dominated by bulk current
- Changes in leakage current can be related to fluence
- Well understood!

Tim Head (CERN)

Effective Depletion Voltages

- Measure by operating 4 out of 5 sensors at nominal bias voltage of 150V and scanning voltage of fifth sensor from 0 to 150V
- Amount of charge collected depends on applied bias voltage

Effective Depletion Voltages

- Measure by operating 4 out of 5 sensors at nominal bias voltage of 150V and scanning voltage of fifth sensor from 0 to 150V
- Amount of charge collected depends on applied bias voltage

Tim Head (CERN)

EDV over Time

- Inversion at around $(10 15) \times 10^{12} 1 \text{MeV} n_{eq}$
- Currently operating at 150V, hardware limit at 500V
 - can comfortably run until the upgrade (9 fb⁻¹)!

Tim Head (CERN)

EDV over Time

- Inversion at around $(10 15) \times 10^{12} 1 \text{MeV} n_{eq}$
- Currently operating at 150V, hardware limit at 500V
 - can comfortably run until the upgrade (9 fb⁻¹)!

Tim Head (CERN)

Cluster Finding Efficiency

Cluster Finding Efficiency

- The pattern recognition builds tracks from individual clusters
- Use same method as for EDV to determine cluster finding efficiency ϵ
- Unexpected drop in ϵ , effect much smaller for ϕ -type than for *R*-type sensors

Tim Head (CERN)

• Uniform, high efficiency at the beginning of data taking

Tim Head (CERN)

- Uniform, high e
- A pattern emer

- Uniform, high efficiency at the beginning of data taking
- A pattern emerges after $\approx 1.2 \, \text{fb}^{-1}$
- No further degradation at 3.4 fb⁻¹
- Capacitive coupling to routing lines in R-sensors
- Most likely causes: modified field lines and/or charge trapping
 - ► Not correlated between sensors ⇒ no effect on tracking or physics performance

Conclusions

- The Velo continues to performan extremely well!
- Velo performance paper about to be submitted
- Radiation damage summarised in: 2013 JINST 8 P08002
- Predictions about radiation damage in good agreement with observations
 - we will make it to the upgrade!
- Inner most part of sensors has undergone type inversion
- Second metal layer effect was a nice riddle that is now understood
- n-on-p sensors preferred for the upgrade
 - we've been testing them all along!