A Luminosity Detector for the PANDA Experiment at FAIR

Prometeusz Jasinski on behalf of the PANDA collaboration 25.02.2014

INSTR14 BINP, Novosibirsk

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

PANDA – Experiment at FAIR

PANDA – Experiment at FAIR

PANDA – Experiment at FAIR

Determination of Luminosity

Elastic scattering as reference

Particle track reconstruction

top view

Measurement close to the Beam

Requirements for the detector:

minimal track distortion by material maximum acceptance elastic events

measurement at smallest angles

Measurement close to the Beam

Requirements for the detector:

minimal track distortion by material

maximum acceptance elastic events

measurement at smallest angles

Requirements by the storage ring:

high vacuum < 10⁻⁹ mbar

maximum acceptance of the beam

slow changes of beam pipe diameter

PANDA beam pipe

PANDA beam pipe

Vacuum Box Prototype

Beam Pipe Prototype

Differential Pumping Scheme

First Pumping Tests

First Pumping Tests

Retractable Detector Halves

Retractable Detector Halves

Retractable Detector Halves

Displacement Measurement in Vacuum

Capacitive probes: Capacitec 208-ACU

2 mm range ~ 40 nm resolution

Aquisition via 18-bit differential ADC and microcontroller with CAN interface

DCS via Epics: Florian Feldbauer Sat 9:00 am

Cooling of HV-MAPS

 $2 \ x \ 2 \ cm^2$ individual HV-MAPS (50 $\mu m)$ 400 in total

digitization on chip (more: Tobias Weber today 3:35 pm)

2011

expected power consumption : 2 mW/mm²

glued on a diamond wafer (200 µm) (high thermal conductivity)

module

tracking plane

Simulations on cooling

Simulations vs. Reality

Testing contact materials for the module clamp and a copper dummy

Simulations vs. Reality

A Support Structure as a Heat Sink

Production of Heat Sink Supports

Original idea: LHCb Velo Detector

melting AIMg4.5Mn alloy for 730°C 90 min in argon atmosphere

Prometeusz Jasinski

Production of Heat Sink Supports

Track Reconstruction

Material Budget of one Plane

 X/X_0 (2 sides) = 0.37% (eq. 350 µm thick silicon)

Resolution at the Detector

Resolution after back propagation

Fit of the Luminosity at 1.5 GeV/c

What's next?

Upcoming tests:

- A full cooling circuit at full load
- More on the mechanical precision
- Glued flex print vacuum feed throughs
- Gluing of thin sensors
- Systematic fit studies

Our goal: finalizing our TDR this year!

Simulations with PANDAROOT (Geant)

Differential Pumping Sheme

Cooling stations for cooling liquids

versus

Cooling power @-20°C 1.9 kW 2.2kW max. pumping speed 105 l/min 45 l/min max. pumping pressure 2.5 bar(special version) 2.9 bar

Geometrical Acceptance

Acceptance at 1.5 GeV/c beam momentum

Welding tube inside

Melting in a copper mold

Melting in a SS mold with inert gas

The biggest fun we had: "Baking cookies"

Question was: Can we melt aluminum cooling blocks around a . stainless steel pipe?

Prototype 5: Vacuum

melting / pressurized

freezing.. Perfect!

As Aluminum crimps more we must get a nice crimp contact though?

Prototype 4: Mg vapor bubbles due to vacuum

Result of vacuum baking: A: Perfect contact around the pipe, B: perfect contra shape of the mold

- Aluminum cookie recipe:
 - Take a stainless steel tin and fill with aluminum blocks or bars (AIMg4,5Mn)
 - Melt aluminum under vacuum <1e-3 mbar at 700°C for 1.5 hour
 - Apply 1 bar Argon pressure for 10 minutes
 - Switch of oven and let cool down.
 - Remove cookies from the mold and machine

"The cookie bakery"

NI

erlaat@nikhef.

CERN

First Pumping Tests

