An APD sensor with extended UV response for readout of BaF_2 scintillating crystals

David Hitlin INSTR2014 February 28, 2014

David Hitlin

INSTR2014

February 28, 2014

1

Background and motivation

- When the cost of LYSO reached unaffordable levels, Mu2e needed a fast, radiation hard crystal with reasonable light output
- Barium fluoride is a potentially interesting candidate, but it presents unique problems
 - It has a very fast scintillation component, which is attractive, but it is accompanied by a much larger slow component
 - Both components are in the UV
- Making use of BaF_2 in a practical experiment requires a photosensor that
 - discriminates between fast and slow scintillation components
 - has a fast time response
 - works in a magnetic field
 - is stable over time
 - is radiation hard
- The development of such a sensor is the subject of this talk

Fast scintillating crystals

	LSO/LYSO	YSO	GSO	BaF ₂			CeBr ₃	LaBr ₃	LaCl ₃
Density (g/cm ³)	7.40	4.54	6.71	4.89	4.51	6.16	5.10	5.29	3.86
Radiation Length (cm)	1.14	3.04	1.38	2.03	1.86	1.70	1.96	1.88	2.81
Molière Radius (cm)	2.07	2.87	2.23	3.10	3.57	2.41	2.97	2.85	3.71
Interaction Length (cm)	20.9	27.3	22.2	30.7	39.3	23.2	31.5	30.4	37.6
Z value	64.8	33.3	57.9	51.6	54.0	50.8	45.6	45.6	47.3
dE/dX (MeV/cm)	9.55	6.70	8.88	6.52	5.56	8.42	6.65	6.90	5.27
Emission Peak ^a (nm)	420	420	430	300 220	420 310	340 300	371	356	335
Refractive Index ^b	1.82	1.80	1.85	1.50	1.95	1.62	2.3	1.9	1.9
Relative Light Yield ^{a,c}	100	40		42 4.8	4.2 1.3	8.6	144	153	15 49
Decay Time ^a (ns)	40	70	65	650 0.9	30 6	30	17	20	570 24
d(LY)/dT ^d (%/ºC)	-0.2	-0.3	-0.7	-1.9 0.1	-1.4	~0	-0.1	0.2	0.1

INSTR2014

David Hitlin

Scintillation pulse shapes

INSTR2014

David Hitlin

Ren-yuan Zhu

мизе

A fast crystal "figure of merit"

Crystal Scintillators	Relative LY (%)	A ₁ (%)	τ ₁ (ns)	A ₂ (%)	τ ₂ (ns)	Total LO (p.e./MeV, XP2254B)	LO in 1ns (p.e./MeV, XP2254B)	LO in 0.1ns (p.e./MeV, XP2254B)	LY in 0.1ns (photons/MeV)
BaF ₂	40.1	91	<mark>6</mark> 50	9	0.9	1149	71.0	11.0	136.6
LSO:Ca,Ce	94	100	30			2400	78.7	8.0	110.9
LSO/LYSO:Ce	85	100	40			2180	53.8	5.4	75.3
CeF ₃	7.3	100	30			208	6.8	0.7	8.6
BGO	21	100	300			350	1.2	0.1	2.5
PWO	0.377	80	30	20	10	9.2	0.42	0.04	0.4
LaBr ₃ :Ce	130	100	20			3810	185.8	19.0	229.9
LaCl ₃ :Ce	55	24	570	76	24	1570	49.36	5.03	62.5
Nal:Tl	100	100	245			2604	10.6	1.1	14.5
Csl	4.7	77	30	23	6	131	7.9	0.8	10.6
CsI:TI	165	100	1220			2093	1.7	0.2	4.8
Csl:Na	88	100	690			2274	3.3	0.3	4.5

Motivates R&D on fast crystals and appropriate solid state readout

David Hitlin

Ren-yuan Zhu

5

BaF₂ is a potentially attractive high rate crystal

• BaF₂ is among the fastest scintillating crystals (0.9ns), but there is a much larger, slower, component (650ns)

In order to take full advantage of the fast component, it is necessary to suppress the slow component

David Hitlin

BaF₂ is a potentially attractive high rate crystal

• BaF₂ is among the fastest scintillating crystals (0.9ns), but there is a much larger, slower, component (650ns)

- In order to take full advantage of the fast component, it is necessary to suppress the slow component:
 - Need a "solar-blind" photosensor

BaF₂ is a potentially attractive high rate crystal

• BaF₂ is among the fastest scintillating crystals (0.9ns), but there is a much larger, slower, component (650ns)

- In order to take full advantage of the fast component, it is necessary to suppress the slow component
 - La doping of pure BaF_2 suppresses the slow component by ~4
 - Other dopings can be explored

Solar-blind photosensors

- Solar-blind PMTs exist
 - Large area, fast, but expensive, and do not work in a magnetic field
- Solar-blind solid state devices also exist
 - SiC APDs (100µm diameter)
 - AlGaN APDs (< 1mm diameter)
- There are several potential approaches to fast, large area, solar-blind, magnetic field insensitive photosensors
 - A variant of the LAPPD channel plate under development by U Chicago/Argonne
 - SiPMs with or without antireflection coatings (e.g., Hamamatsu)
 - Large area delta-doped APDs with AR ALD (Caltech/JPL/RMD)

David Hitlin

How to achieve best possible QE in the 200-300 nm regime?

• Absorption length at 220 nm in silicon is less than 10 nm

- Protective epoxy coating on an APD or SiPM has a strong effect on QE
- Sensitive region of device must be very close to the surface

UV sensitive MPPC

Hamamatsu Photonics/MEG

- Requirements
 - Sensitivity to liquid xenon scintillation ($\lambda = 175$ nm)
 - Large active area $(12 \times 12 \text{ mm}^2)$
 - Single photon counting capability
 - Moderate trailing time constant ($\tau < 50 \text{ ns}$)
- In order to improve sensitivity
 - Remove protection layer
 - Match refractive index to liquid xenon

David Hitlin

• Apply anti-reflection coating

Cross-sectional image of MPPC

Hamamatsu UV sensitive MPPC

IEEE/NSS Seoul Performance of UV-Sensitive MPPC for Liquid Xenon Detector in MEG Experiment D. Kaneko 25% ICEPP, The University of Tokyo, Tokyo, Japan On behalf of the MEG Collaboration 20% Large area MPPC sensitive to the liquid xenon scintillation light $(\lambda = 175 \text{ nm})$ 15% PDE 12×12 mm active area Detection efficiency (PDE) of 17% 10% Pixel gain around 10⁶ 5%

INSTR2014

Version with improved pixel structure is under development

David Hitlin

Far ultraviolet, visible-blind coatings

"Ultraviolet antireflection coatings for use in silicon detector design," Erika T. Hamden, Frank Greer, Michael E. Hoenk, Jordana Blacksberg, Matthew R. 60 Dickie, Shouleh Nikzad, D. Christopher Martin, and David Schiminovich 50 Applied Optics, Vol. 50, Issue 21, pp. 4180-4188 (2011) Bare 40 QE (%) "Delta-doped electron-multiplied CCD with absolute quantum efficiency over 50% in the near to far ultraviolet range for single photon counting 30 applications" Shouleh Nikzad, Michael E. Hoenk, Frank Greer, Blake Jacquot, 20 Steve Monacos, Todd J. Jones, Jordana Blacksberg, Erika Hamden, David Schiminovich, Chris Martin, and Patrick Morrissey 10 Applied Optics, Vol. 51, Issue 3, pp. 365-369 (2012) 0 125 "Atomically precise surface engineering of silicon CCDs for enhanced UV quantum efficiency,"

Frank Greer, Erika Hamden, Blake C. Jacquot, Michael E. Hoenk, Todd J. Jones, Matthew R. Dickie, Steve P. Monacos, Shouleh Nikzad *J. Vac. Sci. Technol.*, A 31, 01A103 (2013)

World record deep ultraviolet quantum efficiency

- QE > 5x Galex
- Stable
- Visible blind coatings are possible

INSTR2014

February 28, 2014 13

APD structure

Deep-diffused architecture (RMD)

- Photoelectrons created by UV photons at the sensing surface must survive trapping at the SiO_2/Si passivation surface interface and recombination in the undepleted p-side neutral drift region (tens of μ m) to reach the depletion region where the avalanche takes place
 - The thickness of the undepleted p-side region is engineered for efficient conversion of visible photons
 - This is undesirable for high UV QE
- The result is that UV QE is reduced and the device speed is determined by the ~10 ns drift time as well as by capacitance
- This structure can be modified, using proven techniques, to improve both UV quantum efficiency and device timing characteristics

David Hitlin

INSTR2014

14 Page

Visible-blind, superlattice-doped silicon detectors

- Eliminating the potential well at the surface and reducing (or removing) the drift region improves the detector UV QE and speed
- The process is executed on modified RMD APD wafers, using an extrapolation of existing technology at Caltech's Jet Propulsion Laboratory (JPL)
 - Molecular Beam Epitaxy
 - > 50% QE at 220 nm
 - Low dark current
 - High conductivity
 - Radiation tolerance
 - Atomic Layer Deposition
 - Chemically passivated interface
 - Visible-blind antireflection coatings: < 1% QE at 300 nm

The process

- Wafers are thinned on the p-side (sensing side) to remove the undepleted region
- Drift region is replaced by 3µm vapor phase epitaxial layer
- Monolayer of boron atoms is deposited ~ 2.5 nm below the surface, eliminating the trapping well

Delta-doping has been applied to CCD detectors

David Hitlin

J. Trauger (PI WF/PC2) – No measurable hysteresis in delta-doped CCDs

INSTR2014

17

February 28, 2014

Delta doping and quantum exclusion

Delta-doping creates a "quantum well" in the silicon

Majority carriers are confined to quantized subbands

Quantum exclusion eliminates trapping Peak electric field is $\sim 10^7$ V/cm Positively charged surface @ 10^{13} cm⁻²

Superlattice doped surface with delta doping

5 nm, 8x10¹⁴ cm⁻²

2.5 nm, 2x10¹⁴ cm⁻²

David Hitlin

INSTR2014

February 28, 2014 19

Thinning improves timing performance

- 3 μ m epitaxial layer deposited on thinned RMD APD (3x3 mm²)
- Illumination with 405 nm laser pulse

Experimental tests for Al₂O₃/Al Blocking Filters (220 nm)

- Design Approach:
 - Develop optical model for stand-alone Al₂O₃ layers (these were deposited at 200°C, Oxford ALD w/ O₂ plasma)
 - Using this model and Al reference model (Palik data) calculate for target layer thickness
 - Designs roughly based on original rejection targets for three or five layer metal/dielectric stacks (target peak @220 nm)
 - Feedback from ellipsometry data to modify thickness targets (*i.e.* due to Al layer oxidation duration processing, *etc.*)
 - Will eventually develop a refined optical model to be more predictive about the expected transmission and reflection, simple discrete layers appear insufficient especially for the five layer tests

INSTR2014

February 28, 2014 21

Muze

• Predicted T_{peak} (normal) = 69% @ 218 nm

• Predicted T_{peak} (normal) = 55% @ 218 nm

J. Hennessy

David Hitlin

Angular dependence of integrated interference filter

J. Hennessy

David Hitlin

Current status

- RMD has furnished six thinned APD wafers to JPL for processing
 - Two stage development plan
 - I: Extended UV response
 - II: Integrate AR interference filter
- Processed wafers have been probed and diced at RMD
 - Devices work as APDs, with somewhat increased noise but fast pulse response
 - Noise has been traced to a contaminated epitaxial vapor deposition source at JPL, which is being disassembled and cleaned
 - JPL will process and AR coat several unpackaged chips and return both coated and uncoated chips to RMD for packaging
 - Chips will undergo full characterization and then tests with BaF_2
- A second batch of wafers is being readied
 - Will explore different depths and density of the superlattice MBE and delta doping
- Goal is to have full size prototype devices for a beam test at MAMI in the fall

Muze

Conclusions

- Full utilization on the fast component of BaF₂ requires development of an appropriate sensor
- Existing large area UV sensitive APDs or SiPMs have ~20% quantum efficiency, slow time response and offer no discrimination between the BaF₂ fast and slow scintillation components
- The Caltech/JPL/RMD collaboration is developing a 9x9mm superlattice thinned, delta-doped APD with integrated AR coating and filter
 - This device promises to have >50% quantum efficiency at 220 nm, strong discrimination of the 300 nm slow component, and excellent timing characteristics

The proverbial bottom line

INSTR2014

February 28, 2014 27

Scintillating crystal calorimeter for mu2e

Calorimeter crystal history

- Initial choice PbWO4: small X_0 , low light yield, low temperature operation, temperature and rate dependence of light output
- CDR choice LYSO: small X_0 , high light yield, expensive (\rightarrow very expensive)
- TDR choice: BaF_2 : larger X_0 , lower light yield (in the UV), very fast component at 220 nm, readout R&D required, cheaper,

Crystal	BaF ₂	LYSO	PbWO ₄
Density (g/cm ³)	4.89	7.28	8.28
Radiation length (cm) X_0	2.03	1.14	0.9
Molière radius (cm) Rm	3.10	2.07	2.0
Interaction length (cm)	30.7	20.9	20.7
dE/dx (MeV/cm)	6.5	10.0	13.0
Refractive Index at λ_{max}	1.50	1.82	2.20
Peak luminescence (nm)	220, 300	402	420
Decay time τ (ns)	0.9, 650	40	30, 10
Light yield (compared to NaI(Tl)) (%)	4.1, 36	85	0.3, 0.1
Light yield variation with temperature(% / °C)	0.1, -1.9	-0.2	-2.5
Hygroscopicity	None	None	None

Reach-Through Avalanche Photodiode (RTAPD)

Reverse biased photodiode with $p^+\pi pn^+$ structure

Atomic Layer Deposition (ALD)

TEM images of ultra-thin (3.5nm), conformal ALD film

• Achieves layer-by-layer growth of films with *Angstrom*-level control over arbitrarily large surface areas

• Wide suite of materials metals, oxides, and nitrides with excellent film properties

• Can be directly integrated into existing detectors/instruments to vastly improve performance

Key advantages of ALD

• Fully complements the surface engineering capabilities of Si MBE with atomic control of ALD

• Thickness can be specified with Angstrom resolution

-Enables precise, repeatable targeting of bands *e.g.* 16.5 nm vs. 23 nm of Al_2O_3

• Process is completely independent of device size

David Hitlin

