

Performance of the LHCb trigger and its upgrade Instrumentation for Colliding Beam Physics 2014

Tim Head for the LHCb collaboration

CERN

1 March 2014

The LHCb Detector

- LHCb is a single-arm (2 < η < 5) spectrometer at the LHC
 - Precision beauty and charm physics: CP violation, rare decays, heavy flavour production
- σ_{bb} and σ_{cc} are extremely large at the LHC
 - 30 kHz $b\bar{b}$ and 600 kHz $c\bar{c}$ in LHCb acceptance!

Tim Head (CERN)

Heavy Flavour Signatures

Beauty hadrons

- B^+ mass 5.28 GeV, daughter $p_T O(1 \text{ GeV})$
- lifetime ≈ 1.6 ps ⇒ flight distance ≈ 1 cm
- common signature: detached $\mu\mu$

- D^0 mass 1.86 GeV, sizeable daughter p_T
- lifetime ≈ 0.4 ps ⇒ flight distance ≈ 4 mm
- can be produced in B decays

Tim Head (CERN)

LHCb Trigger Scheme

Level 0

- implemented in custom made hardware
- decisions made in $4\,\mu s$
- High Level Trigger
 - implemented exclusively in software
 - extremely flexible
 - 29000 logical cores
 - writes 5 kHz to storage (2 kHz incl B, 2 kHz incl charm, 1 kHz muons)

Details in JINST 8 (2013) P04022

Muon Based L0 Triggers

Reconstructs muon track segments

• *△p/p* ≈ 20%

Two L0 muon triggers:

- single muon, $p_T > 1.76 \,\text{GeV}$
- dimuon, $p_{T1} \times p_{T2} > (1.6 \,\text{GeV})^2$
- total rate ≈ 400 kHz

Typically over 90% efficiency

Calorimeter Based L0 Triggers

Select high E_T hadrons, electrons and photons

• Preshower and SPD discriminate between electrons and photons

L0 hadron trigger:

- threshold 3.6 GeV
- rate ≈ 490 kHz

L0 electron, photon:

- threshold 3 GeV
- rate ≈ 150 kHz
- $\approx 80\%$ efficient for $B \rightarrow X\gamma$

Total LO rate $\approx 1\,\text{MHz}$

Tim Head (CERN)

Performance of the LHCb trigger and its upgrade

≡^{TOS} / 100%

0.8

0.6

0.4

0.2

HCAL

 $\bullet B^0 \rightarrow D^0 \pi^-$

 $\rightarrow K^+\pi^-$

 $\rightarrow K^{+}\pi^{+}$

SPD + Preshower +

LHCb preliminary

ECAL

Deferred Trigger

Deferred Trigger

- LHC "only" delivers collisions 30% of the time
 - trigger farm idle for 70% of the time!
- in total farm has $\approx 1 \text{ PB}$ storage which is not being used

\Rightarrow overcommit HLT by 20-30% and catch up during the breaks

- Gains 20% extra CPU time
 - ▶ lower track reconstruction thresholds $(p_T = 500 \rightarrow 300 \text{ MeV})!$

Tim Head (CERN)

First Stage of the High Level Trigger

- Reconstruct all Velo tracks and perform PV finding
- Tracks with large IP or matched to a L0 muon are "upgraded"
 - measure momentum using tracking stations after the magnet Tim Head (CERN)
 Performance of the LHCb trigger and its upgrade

First Stage of the High Level Trigger (cont)

HLT1 output rates:

- Muons ≈ 14 kHz
- Inclusive ≈ 58 kHz

• **Total** ≈ 80 kHz

Tuned to maximise HLT2 CPU usage

high p_T or large lifetime

single track with larg IP and high p_T

- Full offline like event reconstruction!
- Extremely powerful, flexible software environment
- Combining inclusive and exclusive selections
- Main trigger is MVA-based

Trigger Performance

	Hadronic		Dimuon	Radiative
	D→hhh	B→hh	${\sf B}^+ \to {\sf J}/\psi{\sf K}^+$	$B^0\toK^*\gamma$
L0 [%]	27	62	93	85
HLT L0 [%]	42	85	92	67
HLT × L0 [%]	11	52	84	57

Tim Head (CERN)

Developments for 2015

LHCb 2015 Trigger Diagram

- Decouple HLT2 from HLT1
 - by buffering events after HLT1
- Align and calibrate detector
- Run offline-like reconstruction in HLT2
- Can now use full RICH PID
 - separate Cabbibo suppressed charm decays from favoured ones
- Larger output rate achieved by parking data

The Future's Future

For Rare Decays

Hadronic Beauty

- To take advantage of running at $L = 2 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$, we need to read out every event!
 - ▶ L0 trigger limited to 1 MHz output \Rightarrow bottleneck
- Replace L0 with Low Level Trigger, replace sub-detectors and DAQ
- Large gains to be made for hadronic triggers
- As trigger farm grows progressively loosen LLT cuts until eventually full rate is delivered to a fully software based trigger.

The Upgraded LHCb Experiment

Provide an environment which is of the same sophistication and quality as "offline"

Tim Head (CERN)

Closing Ceremony

• The LHCb trigger system is extremely successful!

- The LHCb trigger system is extremely sophisticated
 - can react quickly to changes in running conditions
 - deferred triggering to boost recorded physics
 - use MVAs already in the trigger
- For 2020 LHCb will have a truly upgraded trigger
 - goal is to be able to do physics with the output of the trigger

Tim Head (CERN)