Challenges in Instrumentation at the PANDA Experiment

February 24, 2014

Instrumentation 2014

Miriam Fritsch

University Mainz Helmholtz Institute Mainz

Millenium Question

How is the proton mass created ?

Proton consists of 3 quarks

But:

 \rightarrow Only 2% of the proton mass from the quarks

Millenium Question

How is the proton mass created ?

Proton consists of 3 quarks

But:

- \rightarrow Only 2% of the proton mass from the quarks
- → 98% from complex binding not understood sufficiently

Binding force between the quarks ? Internal structure ?

Charged Resonance by BESIII and Belle

Line shape measurement: X(3872)

Energy scan method X(3872) with $\Gamma = 136 \text{ keV}$ $\sigma = 100 \text{ nb}$ 16 Scan points, 40 days

Width measurement < 10% All conventional Quantum Numbers accessible

Miriam Fritsch

PANDA Physics Program

Miriam Fritsch

Antiproton Facility PANDA @ FAIR

Miriam Fritsch

Antiproton Facility PANDA @ FAIR

SIS100 SIS18 p-Linac **PANDA** High Energy Storage Ring **HESR** Beam momentum 1.5 - 15 GeV/c Momentum resolution $\Delta p/p < 4 \cdot 10^{-5}$ an m < 2 · 10³² cm⁻²s⁻¹ Luminosity **CR/RESR** Interaction rate up to $2 \cdot 10^{7}/s$

Miriam Fritsch

Interaction rate 20 MHz 4π acceptance Momentum resolution: 1% Photon detection: 1 MeV – 10 GeV Photon energy resolution: $1.5\%/\sqrt{E}$ Particle identification Precise vertex reconstruction

Miriam Fritsch

Miriam Fritsch

Miriam Fritsch

Miriam Fritsch

Miriam Fritsch

Miriam Fritsch

Miriam Fritsch

Tracking System Micro Vertex Detector

Momentum and Vertex of charged tracks

Miriam Fritsch

Tracking System Micro Vertex Detector Straw Tube Tracker Momentum and Vertex of charged tracks

Miriam Fritsch

Tracking System **GEM Tracker** Micro Vertex Detector Straw Tube Tracker

Momentum and Vertex of charged tracks

Miriam Fritsch

Sensors

Hybrid pixels sensors

(inner layers)

Double-sided micro strips detectors

(outer layers)

Cooling of front-ends Low mass support structure

4 barrel layers6 forward disks layers

Sensors and Readout

Silicon pixel sensors (10⁷ channels)

Pixel size 100 x 100 μ m²

Specialized custom hybrid \rightarrow ToPix

- ToT for dE/dx
- Fast data handling
- Untriggered readout
- Radiation hard
- Minimum material load

Silicon strip sensors (200.000 channels)

Double-sided sensors Pitch of 50 or 65 µm

285 µm thick

Customized free-running front-end

 \rightarrow Under development (ToPix-like)

Prototype Tests

Successful hardware tests in-beam

Free-running data collection Radiation hardness studies Mechanics

Particle Identification System

Miriam Fritsch

Miriam Fritsch

Miriam Fritsch

DIRC Detectors

Detection of Internally Reflected Cherenkov light

Laser tests

characterize transmission and reflectivity

Radiator 80 radiator bars Synthetic fused silica 1.7 x 3.3 x 250 cm³ Polished to 150 nm rms

Barrel DIRC

Focussing system Double lens system, 30 cm container oil-filled

DIRC Detectors

Readout

Number of photoelectrons per track > 20 → Single photon sensitivity → Low dark count rate Fast timing ~100 ps Operation in magnetic field High rates up to 2 MHz/cm² → MCP-PMTs (15 kchannels)

Calorimetry Systems

PWO Crystal Calorimeter

Identification of photons and electrons

Miriam Fritsch

Calorimetry Systems

Identification of photons and electrons

PWO Crystal Calorimeter

Miriam Fritsch

Challenges for the PANDA Experiment – February 24, 2014

Shashlyk Calorimeter

PWO Crystal Calorimeter

Requirements

Low and high energetic photons Resolution $\sigma(E)/E \sim 1.5\%/\sqrt{E}$ (+ C) Fast signals

PWO

Operation at -25°C Temperature stability 0.1°C Large Photosensors LA APD

~ 16000 PWO Crystals

10x10 mm² 7x14 mm²

Prototype Tests

Computing

Miriam Fritsch

Technical solutions for most of the detectors Scaled prototypes in beam tests Full integration underway TDRs of subsystems Extended simulations with full set of detectors \rightarrow Technical issues/ detector optimization \rightarrow Physics

PANDA is entering the construction phase

First beams planned for end 2018

Miriam Fritsch

PANDA Collaboration

> 520 Scientists67 Institutions17 Countries

U Basel IHEP Beijing U Bochum U Bonn U & INFN Brescia IFIN Bukarest U & INFN Catania U Cracow GSI Darmstadt TU Dresden JINR Dubna U Edinburgh U Erlangen NWU Evanston

U & INFN Ferrara **U** Frankfurt LNF-INFN Frascati U & INFN Genoa **U** Glasgow U Gießen **KVI** Groningen **IKP** Jülich **U** Katowice IMP Lanzhou U Mainz U & INFN Milano Politecnico di Milano U Minsk **TU München** U Münster **BINP Novosibirsk** LAL Orsay U & INFN Pavia **IHEP** Protvino **PNPI** Gatchina U of Silesia, Katowice U Stockholm **KTH Stockholm** U & INFN Torino Politechnico di Torino U Oriente, Torino U & INFN Trieste U Tübingen U & TSL Uppsala U Valencia SMI Vienna SINS Warsaw **U** Warsaw

Backup

Clusterjet Target

Tracking System

Cylindrical central tracker 27 layers

Planar forward tracker ector 6x4 planes

Aluminum mylar tubes with 1 cm Ø and 27 µm walls

ArCO₂ at 1 bar overpressure

Low mass 0.05% X₀ per layer

Momentum and Vertex of charged tracks

Miriam Fritsch