

The International Conference on Instrumentation for Colliding Beam Physics (INSTR 2014)

CLIC Vertex Detector R&D

Sophie Redford

on behalf of the CLIC Detector and Physics Collaboration

- Linear electron-positron collider
- $\sqrt{s} = 3$ TeV (staged construction)
- High luminosity: 10³⁴ cm⁻²s⁻¹
- Small bunch size: $\sigma_{xyz}(40 \text{ nm}, 1 \text{ nm}, 44 \mu \text{m})$
- Beam structure:

Detector environment

- Beamstrahlung creates high particle rate 'beam induced backgrounds'
 - most at low angle, low p_T, constrained by B field
- Inner radius of vertex detector restricted by particle density

The CLIC detector

Precision physics in a challenging environment: broad programme of R&D

Highly granular particle flow calorimetry, using tungsten absorber

5.5 m diameter cryostat for superconducting solenoid, B field 4-5 T

Instrumented steel return yoke

Complex forward region

Vertex detector requirements

Efficient tagging of heavy quarks through a precise determination of displaced vertices

Multi-layer barrel and endcap pixel detectors

- ▶ 560 mm in length
- Barrel radius from 30 mm to 60 mm

- Single point resolution of 3 µm
- Material budget of < 0.2% of a radiation length per layer
- No active cooling elements use forced air flow cooling
- Limit the power dissipation to 50 mW/cm² in sensor area
- Hit time slicing of 10 ns

Olympic programme of R&D

Geometry optimisation studies

Double-sided layers

Comparison of 5 single-sided layers and 3 double-sided layers

- Similar flavour tag performance for two considered layouts
- Increasing the material has a larger impact than the layout

Thin sensor assemblies

- Hybrid planar pixel technology
- Ultimate goal: 50 µm sensor on 50 µm ASIC
- 25 µm pitch
- Thin edge sensors using Through-Silicon-Vias

50 μm thick silicon wafer

TSVs:

- Vertical electrical connection no wire bonds
- Sensors buttable on all sides better tiling

- 60 μm hole diameter
- Wafer thinned to 120 µm
- 5 µm copper layer for TSV

Testbeam analysis

- Thin sensors (50 300 μm) bonded to normal Timepix chips
- One 100-on-100 µm assembly
- Data recorded at DESY: 5.6 GeV electron beam

100 µm thick sensor - low charge sharing

Sensor calibration

Global calibration

- Calibrate TOT values by measuring response to photons of known energy
- Accounts for non-linearities
- Calibration aligns Landau's and improves the resolution: 4.8 µm → 4.7 µm

No calibration

2 hit clusters global calibration EtaCorrection

0

 -0.0002513 ± 0.0000162

 0.00471 ± 0.00001

0.05

Y residual (mm)

Sources and X-ray fluorescence

Preliminary

0.1

Readout ASIC: CLICpix

- The CLICpix ASIC: a fast, low power readout chip with 25 µm pitch
- Implemented in 65 nm CMOS technology
- 4-bit time and energy measurements for each pixel
- Supports power-pulsing and data compression

CLICpix characterisation

TOT gain distribution

- Time Over Threshold gain distribution
- Uniform gain across the whole matrix
- Gain variation is 4.2% r.m.s. (for nominal feedback current)

- Matrix equilisation
- Calibrated spread is 0.89 mV (about 22 e⁻) across the whole matrix
- (Expect a signal of ~thousands of electrons in 50 µm sensor)

Power-pulsing strategy

- Power pulse CLICpix ASIC to achieve dissipation <50 mW/cm² in the sensor area
- Analog electronics can be turned off: $2 \text{ W/cm}^2 \rightarrow 2 \text{ mW/cm}^2$
- Digital electronics in idle except during readout: 100 mW/cm² \rightarrow 13 mW/cm²

Power delivery

- Power ladders from each end of the barrel:
 - constant current sources, low dropout regulators, silicon capacitors

Material budget:

- Aluminium flex cables and silicon capacitors reduce material
- Powering adds $0.1\% X_0$ per layer. Projected: < $0.05\% X_0$

Power-pulsing lab tests

Controlled current source

Analogue:

- Voltage drop < 20 mV
- Measured average power dissipation < 10 mW/cm²

Digital:

Measured average power dissipation < 35 mW/cm²

Total dissipation: < 50 mW/cm²

Air-flow cooling

- Total heat load after power-pulsing ~470 W
- Cooling provided by forced air-flow:
 - Dry air cooling at 0°C
 - ► Low material: radiation length of air ~310m

Warm air

Air-flow simulations

- Mass flow: 19.9 g/s
- Avg. velocity in barrel: 6.3 m/s
- Silicon temperature below 40°C
- Conduction not taken into account

Mechanical support structures

- Develop and characterise low-mass carbon-fibre structures
- Stave dimension 1.8 mm*26 mm*280 mm
- Goal material per layer: 0.05% X₀

Rohacell core (PMMA)

Full sandwich stave

Cross braced staves

Skin stave

Stave mechanical characterisation

 Measure the flexural stiffness (resistance to bending) of the staves over span of 180 mm

		and the second sec			
Measurements	6.95 N/mm	2.24 N/mm	3.3 N/mm	2.96 N/mm	2.23 N/mm
Simulations	6.95 N/mm	2.35 N/mm	-	-	2.30 N/mm

Next: measure the amplitude of stave vibration in air flow

Thermo-mechanical test bench

- Measure wind speeds, stave temperatures, stave vibrations
- Allows validation of simulations

Thermal camera

Simulation

Test bench results

 Simulation in good agreement with measurements

Flow direction

Summary

- CLIC machine and physics requirements place challenging demands on the vertex detector
- Initial layouts are being refined
- Active R&D into thin sensor assemblies and readout chips
- Powering, cooling and mechanical supports under design and test

The CLIC vertex detector: precision at high energy

Thanks for your attention!