

Kenkichi Miyabayashi (Nara Women's University, Japan) Instr14 conf., BINP in Novosibirsk 2014 Feb. 28th

Outline

- Calorimeter for e^+e^- collider at Υ region
- SuperKEKB and Belle II
 - Challenge : beam background immunity
- Belle II electromagnetic calorimeter
 - Day-1 : CsI(TI) with waveform sampling readout
 - Forward Endcap upgrade with Pure Csl
- Summary

Calorimeter for e^+e^- at Υ region

- Wide dynamic range: 20MeV~7GeV
 - 1/3 of B decays have π^0 , most of γ ~100MeV.
 - Radiative B decays ($B \rightarrow K^* \gamma$, etc.) γ up to 4GeV
 - Bhabha, $e^+e^- \rightarrow \gamma\gamma$ calibration, up to 7GeV
- High energy resolution
 - $\sigma_{\rm E}/{\rm E}$ ~ 4% at 100MeV
 - $\sigma_{\gamma\gamma} \sim 5 \text{MeV/c}^2$ for π^0
- High position resolution
 - σ_x : 5~10mm at the incident point

Csl(T₁) with PIN-PD readout was used at B-factories

8736 Csl counters are used.

Nano-beam collision $L = \frac{\gamma_{e\pm}}{2er_e} \left(1 + \frac{\sigma_y^*}{\sigma_x^*} \right) \left(\frac{I_{e\pm} \cdot \xi_{y,e\pm}}{\beta_y^*} \right) \left(\frac{R_L}{R_{\xi_y}} \right)$ $\overbrace{\sigma_x \sim 100 \mu m, \sigma_y \sim 2\mu m}}{\circ_{g_x \sim 10\mu m, \sigma_y \sim 60 n m}}$

KEKB

SuperKEKB

To increase luminosity, small β function is used. To handle hourglass effect, β >size of collision spot, large crossing angle, one bunch behaves as "super bunch".

Belle II Detector

K_L and muon detector: Resistive Plate Counter (barrel outer layers) Scintillator + WLSF + MPPC (end-caps, inner 2 barrel

layers)

EM Calorimeter: CsI(TI), waveform sampling (baseline) (opt.) Pure CsI for end-caps

electron

(7GeV) Beryllium beam pipe 2cm diameter

Vertex Detector 2 layers DEPFET + 4 layers DSSD

> **Central Drift Chamber** He(50%):C₂H₆(50%), Small cells, long lever arm, fast electronics

Particle Identification Time-of-Propagation counter (barrel) Prox. focusing Aerogel RICH (fwd)

positron (4GeV)

7

Upgrade to give optimum performance under ×20 beam background!

Day-1: existent CsI(T_l)

Challenge : Beam BG immunity

Csl(T_l) large light output, but...

Challenge is to realize beam background immunity

Waveform sampling readout

2MHz, 18bits digitizer, waveform fit to get energy and timing (i.e. Digital Signal Processing)

Reduction factors; ×7 BG showers ×1.5~2 pileup noise 11

Early prototype tested at Belle

1/8 of backward endcap was connected to waveform sample readout prototype, 1fb^{-1} was taken on $\Upsilon(4S)$ resonance.

Electronics production and test

Shaper+DSP board for barrel

Test facility in KEK

For barrel, 112 (FY2012) + 280 (FY2013) Shaper+DSP boards have been delivered and tested. 55 in FY2014. Most of the Shaper+DSP boards for endcaps are in FY2014.

Further pileup reduction at Endcap

Because of short scintillation decay time, ~30ns, Pure Csl crystal is almost pileup free. Photo Pentode readout is regarded as a baseline, noise~0.2MeV.

LAAPD is also being tested.

Discussing plan of replacement of inner part of forward endcap in a couple of years after first physics run.

Summary

- SuperKEKB is aiming ×40 luminosity w.r.t. KEKB.
- Mostly beam background comes from Rad.
 Bhabha, i.e. proportional to luminosity(!)
- Beam background immunity is a challenge for the calorimeter.
 - For day-1, use all the existent CsI(T_l) with waveform sampling readout electronics. Preparation is in good shape.
 - For further pileup suppression in forward endcap, plan to replace by Pure Csl is being figured out.