Polarisation and Beam Energy Measurement at a Linear e⁺e⁻ Collider.

Plans and Prospects at the ILC.

Benedikt Vormwald INSTR 2014 Novosibirsk, 24.02.2014-01.03.2014

Introduction

> Beam polarisation measurement

> Beam energy measurement

> Conclusions

Introduction

> Beam polarisation measurement

> Beam energy measurement

> Conclusions

DESY

The International Linear Collider

- 31 km long, future linear lepton collider at the energy frontier
- Technical Design Report published on 12th June 2013
- centre-of-mass energy \sqrt{s} =500GeV (upgrade to 1TeV)
- polarised lepton beams (P(e⁺)≥30%, P(e⁻)≥80%)

$$P_Z \equiv P = \frac{N_R - N_L}{N_R + N_L}$$

Physics Motivation

Collision of elementary particles offers the possibility to do high precision physics → well defined initial state

Particle helicity

- electroweak production (V-A theory) \rightarrow spin dependent
- beam polarisation can enhance and supress processes
- beam polarisation gives new observables (A_{LR})

Centre-of-mass energy

- cross sections are energy dependent
- kinematic constraints can improve resolution (kinematic fitting)

excellent beam line instrumentation for the initial state

The Beam Delivery System

- instrumentation for emittance measurement
- polarimeter 1700m upstream the IP
- energy spectrometer 700m upstream the IP
- final focus of the beam to nm scale

The Extraction Line

- energy spectrometer 55m downstream the IP
- secondary focus in extraction line
- polarimeter 150m downstream the IP
 - → measure collision effects
 - \rightarrow cross check when no collision

Introduction

> Beam polarisation measurement

> Beam energy measurement

> Conclusions

DESY

Polarimetry Concept for the ILC

2) Spin tracking along the beam delivery system in order to relate measurements to the interaction point

- \rightarrow simulation of spin precession in the BDS (T-BMT)
- \rightarrow depolarising effects in collision

e⁺e⁻ annihilation data for long-term polarisation measurement

- → Blondel-scheme: determine P from all possible beam helicity combinations
- → WW production (total cross section, differential cross sections depend on P)

Polarisation Measurement

Energy of the Compton-scattered electrons [GeVpeam energy measurement at a linear e^{+e-} collider | 30.01.2014 | Page 10

Polarisation Measurement

Polarisation Measurement

Gas Cherenkov Detector Prototype

Differential Photomultiplier Calibration

requirement: detector nonlinearity < 0.5% \rightarrow calibration

 $P = \frac{1}{A} \frac{N^{+} - N^{-}}{N^{+} + N^{-}}$

- → no absolute calibration, **but "only"** linear response
- \rightarrow differential nonlinearity measurement with 2 light pulses
- → dedicated LED system fulfils requirements

→ ILC bunch structure allows for online nonlinearity monitoring (~5h)

Quartz Cherenkov Detector Prototype

Alternative: Quartz as Cherenkov Material

- higher refractive index \rightarrow higher photon yield
- for enough photons per Compton e⁻ resolve singe Compton e⁻ multiplicities

→ self-calibrating detector

Prototype Build and Testing

- quartz bars: 5mm×18mm×100mm
- adjustable incident angle of e-
- multianode PM readout
- 4-channel prototype tested in DESY II testbeam (2013)

Quartz Cherenkov Detector Prototype

Alternative: Quartz as Cherenkov Material

- higher refractive index \rightarrow higher photon yield
- for enough photons per Compton e⁻: resolve singe Compton e⁻ multiplicities

→ self-calibrating detector

Prototype Build and Testing

- quartz bars: 5mmx18mmx100mm
- adjustable incident angle of e-
- multianode PM readout
- 4-channel prototype tested in DESY II testbeam (2013)

→ first testbeam results look promising

Introduction

> Beam polarisation measurement

> Beam energy measurement

> Conclusions

Benedikt Vormwald | Polarisation and beam energy measurement at a linear eter collider | 30.01.2014 | Page 17

Energy Measurements Concept for the ILC

) Upstream Energy Spectrometer for direct beam energy measurement
 → non-invasive energy measurement before collision

2) **Downstream Energy Spectrometer** for direct beam energy measurement

ightarrow downstream measurement sensitive to beamstrahlung losses after collision

) **e⁺e⁻ collision data** for long-term energy calibration

→ radiative Z return (e⁺e⁻→ $\mu\mu\gamma$), acolinear Bhabha events, ...

Beam Energy Measurement – BPM Energy Spectrometer

- ILC baseline upstream energy spectrometer
- design inspired by LEP2 energy spectrometer \rightarrow single dipole (Δ E/E=0.017%)
- small inclination of beam in cavity BPM favourable
- displacement of beam in chicane by 5mm \rightarrow minimise emittance growth
- vertical offset proportional to energy

$$E = qc \frac{d}{x} \int \vec{B} \cdot d\vec{s}$$

Precision Goal

$$\Delta E \,/\, E \approx O(0.01\%)$$

 \rightarrow resolution better than 500nm

Status of the BPM Energy Spectrometer

Nanometer Precision BPMs

- cavity BPM capable to reach nm precision
- nanoBPM tested in ATF extraction line (KEK)
- achieved BPM resolution:

position: 15.6nm tilt: 2.1µrad

NIM A 578 (2007) 1-22

ILC-like Energy Chicane Test Setup

- test setup in ESA at SLAC
- ILC like beam conditions at ESA
- operated at dispersion of 5mm
- stability over one hour on O(µm)
- achieved resolution: 0.8µm in x/ 1.2µm in y $\rightarrow \Delta E/E=0.05\%$

NIM A 592 (2008) 201-217 JINST 6 P02002, 2011

parameter	SLAC ESA	ILC500
rep. rate	10Hz	5Hz
energy	28.5GeV	250GeV
bunch charge	1.6·10 ¹⁰	2.0·10 ¹⁰
bunch length	500µm	300µm
energy spread	0.15%	0.15%

Beam Energy Measurement – Synchrotron Strip Detector

- design inspired by SLC WISRD $\rightarrow \Delta E/E=0.02\%$
- quartz fibres (100µm) producing Cherenkov light
- readout via photomultipliers
- synchrotron radiation distributed over a few fibres due to beam energy spread
 - \rightarrow sensitive to energy spread/ width

Precision Goal

 \rightarrow precision of fibre positioning: 20µm

Status of Synchrotron Strip Detector

- prototype tested in ESA at SLAC
- ILC-like setup
- 64x140µm(100µm active) UV fibres
- spaced on 200µm pitch
- ightarrow no show-stopper in sight

Eric Torrence

Introduction

> Beam polarisation measurement

> Beam energy measurement

> Conclusions

Benedikt Vormwald | Polarisation and beam energy measurement at a linear eter collider | 30.01.2014 | Page 23

- > High precision physics needs also excellent beam instrumentation
- > Polarimeter: two possible Cherenkov detector concepts (gas, quartz)
- Energy spectrometer: two independent spectrometer concepts
- Polarisation and energy measurement concepts at the ILC in a good shape
- > Precision goals reachable

Backup slides

The International Linear Collider – Beam Parameters

	Center-of-mass energy	$E_{\rm cm}$	GeV	250	500	1000
	Number of bunches per train	N_b		1312	1312	2450
	Bunch population	N	$\times 10^{10}$	2.00	2.00	1.74
	Average total beam power	$P_{\rm beam}$	MW	5.9	10.5	27.2
	Estimated AC power	$P_{\rm AC}$	MW	122	163	300
	RMS bunch length	σ_z	$\mu{ m m}$	300	300	250
	Electron RMS energy spread	$\Delta p/p$	%	0.190	0.124	0.083
	Positron RMS energy spread	$\Delta p/p$	%	0.152	0.070	0.043
	Horizontal emittance	$\gamma \epsilon_x$	$\mu{ m m}$	10	10	10
	Vertical emittance	$\gamma\epsilon_y$	nm	35	35	35
	IP horizontal beta function	eta_x	mm	13.0	11.0	22.6
	IP vertical beta function	β_y	mm	0.41	0.48	0.25
	IP RMS horizontal bunch size	σ_x	nm	729.5	474.0	481.0
	IP RMS vertical bunch size	σ_y	nm	7.7	5.9	2.8
	Luminosity	${\cal L}$	$\times 10^{34} {\rm cm}^{-2} {\rm s}^{-1}$	0.75	1.8	3.6
	Average energy loss	δ_{BS}	%	0.97	4.5	5.6

- high luminosity needs strongly focused beams
- beam strahlung limits focussing \rightarrow flat beam
- however: after collision disrupted bunches

 \rightarrow beam energy and polarisation measurement before and after IP differ

ILC Positron Source

Benedikt Vormwald | Polarisation and beam energy measurement at a linear eter collider | 30.01.2014 | Page 27

Challenges of Downstream Polarimetry

Downstream polarimeter necessary in order to measure beam depolarisation in collision

Laser System

- highly disrupted bunch \rightarrow e+/e- density smaller
- compensation by larger laser power (100mJ)
- impossible to probe all O(1000) bunches per train \rightarrow three shots per train

Magnetic Chicane Design

- downstream polarimeter IP at secondary focus
- downstream the IP large backgrounds
 → blind area for polarimeters
- special 6-dipole-chicane dipole 3 stronger than dipoles 1+2
- larger fraction of Compton fan outside the blind area

Principle of Differential Nonlinearity Measurement

Measurement of number of Compton electrons for two helicity configurations of the laser in one detector channel (=energy interval):

DNL Measurement

Hamamatsu 5900-M4 PMT 2x2

 \rightarrow PMT used in gas-prototype

Default configuration

\rightarrow already very linear in the low intensity regime

DNL Measurement (Correction)

- · correction extracted from statistically independent data set A
- applied to data set B

Extracted correction function

\rightarrow correction linearises dataset B

Test Setup

Beam Energy from Collision Data

→needs excellent tracking →Δθ=10⁻⁴

