

Latest Results on Anomalous Gauge Couplings from CMS

Ekaterina Avdeeva

University of Nebraska – Lincoln On behalf of the CMS collaboration

PHOTON-2015 Conference

Budker Institute of Nuclear Physics, Novosibirsk June 15th-19th 2015

Outline

 \succ Introduction to anomalous gauge couplings

Results from:

Introduction

(aTGC – anomalous Triple Gauge Coupling, aQGC – anomalous Quartic Gauge Coupling)

We consider TGC and QGC vertexes with W, Z and y which:

- (1) Obey charge conservation law
- (2) Include at least one massive boson

we measure spectrum of kinematic variable of the process which might involve (a)TGC/ (a)QGC and compare it to the Standard Model and aTGC/aQGC model predictions

List (not full) of aTGC/aQGC analyses in CMS

<u>Searches for anomalous Triple Gauge Coupling:</u>

[1] $Zy \rightarrow I^+I^-y$, 8 TeV: http://arxiv.org/abs/1502.05664
[2] $Zy \rightarrow I^+I^-y$ and $Wy \rightarrow Ivy$, 7 TeV: http://arxiv.org/abs/1308.6832
[3] $Zy \rightarrow v\overline{vy}$, 7 TeV: http://arxiv.org/abs/1309.1117
[4] WW \rightarrow IvIv, 8 TeV: http://cds.cern.ch/record/2002016?ln=en
[5] WW+WZ \rightarrow lvjj, 7 TeV: http://arxiv.org/abs/1210.7544
[6] ZZ \rightarrow 4I, 8 TeV: http://arxiv.org/abs/arXiv:1406.0113
[7] ZZ \rightarrow 2l2v, 8TeV: http://arxiv.org/abs/1503.05467
Searches for anomalous Quartic Gauge Coupling:
[8] WZy+WWy \rightarrow Ivjjy, 8TeV: http://arxiv.org/abs/1404.4619
[9] $W^{\pm}W^{\pm}+jj \rightarrow l\nu l\nu+jj$, 8 TeV: http://arxiv.org/abs/1410.6315
[10] VBS $\gamma\gamma \rightarrow WW \rightarrow I\nu I\nu$, 7 TeV: http://cds.cern.ch/record/1518733?In=en

Z decay modes:

Mode	Br, %
e⁺e⁻	3.4
µ⁺µ⁻	3.4
τ*τ-	3.4
νν	20.0
hadrons	69.9

W decay modes:

Mode	Br, %
eν _e	10.7
μv_{μ}	10.6
τν,	11.4
hadrons	67.4

highlighted analyses are discussed in this presentation

Zy Final State [1], [2], [3]

 $Zy \rightarrow I^+I^-y$ process signature: charged lepton pair, and photon.

 $Zy \rightarrow v\overline{v}y$ process signature: significant E_{τ}^{miss} due to neutrinos, and photon.

$Zy \rightarrow I^+I^-y$. Selection and Background Estimation

Event Selection:

- well identified photon with $E_{_{T}}^{^{\gamma}}\!\!>\!\!15$ GeV, $|\eta^{\gamma}|\!<\!\!1.44$ or 1.57< $\!|\eta^{\gamma}|\!<\!\!2.5$
- 2 isolated well identified leptons p_{τ}^{1} >20 GeV, M¹>50 GeV
- $\Delta R(lep, \gamma) = \sqrt{\Delta \phi^2 + \Delta \eta^2} > 0.7$

Background Estimation:

- **Z+jets (jets** \rightarrow **y misidentification):** template fits of one of photon variables; photon-like jet template taken from jet-enriched dataset; real photon template extracted using different methods for different cases

- Other: MC-based estimation

e⁺e⁻ and μ⁺μ⁻ channels cosidered separately

$Zy \rightarrow v\overline{v}y$. Selection and Background Estimation

Event Selection:

- well identified photon with E_{τ}^{γ} >145 GeV, $|\eta^{\gamma}|$ <1.4

- E_{τ}^{miss} >130 GeV (due to neutrinos)

- events which contain other particles (which pass certain p_{τ} threshold and quality criteria) are vetoed

- timing of photons measured in ECAL has to be consistent with beam crossing

73 candidate events selected

Background Estimation:

- jets \rightarrow y misidentification: calculate misidentification ratio using events from jet-enriched dataset

- **beam-halo (machine induced particles):** estimated from events which are not consistent with beam crossing

- $e \rightarrow y$ misidentification: estimated from control sample dominated by $W \rightarrow ev$ events
- Wy, y+jets, yy: MC-based estimation

Total background estimate: 30.2±6.5, signal MC (Standard Model, NLO): 45.3±6.9

7

Zy. Differential Cross Section

- Differential cross section measured for $Zy \rightarrow I^+I^-y$ (8 TeV)
- Consistent with the Standard Model prediction

Zy. aTGC Limits

Results are consistent with the Standard Model Prediction

Feb 2015			
			ATLAS Limits CMS Prel. Limits CDF Limit
μ ^γ	⊢ I	Ζγ	-0.015 - 0.016 4.6 fb ⁻¹
П ₃	H	Zγ	-0.003 - 0.003 5.0 fb ⁻¹
	 	Zγ	-0.005 - 0.005 19.5 fb ⁻
	├ ────┤	Ζγ	-0.022 - 0.020 5.1 fb ⁻¹
hZ	⊢−−−−− I	Ζγ	-0.013 - 0.014 4.6 fb ⁻¹
13	\vdash	Ζγ	-0.003 - 0.003 5.0 fb ⁻¹
	H	Ζγ	-0.004 - 0.004 19.5 fb ⁻
	H	Ζγ	-0.020 - 0.021 5.1 fb ⁻¹
$b^{\gamma} \times 100$	⊢−−−− 1	Ζγ	-0.009 - 0.009 4.6 fb ⁻¹
H ₄ ×100	н	Ζγ	-0.001 - 0.001 5.0 fb ⁻¹
	⊢1	Ζγ	-0.004 - 0.004 19.5 fb ⁻
$h^{Z} \times 100$	⊢−−−− I	Ζγ	-0.009 - 0.009 4.6 fb ⁻¹
14×100	н	Ζγ	-0.001 - 0.001 5.0 fb ⁻¹
	H	Ζγ	-0.003 - 0.003 19.5 fb
-0.5	0	05	1 15 $\times 10^{-1}$
0.0	U	aT	GC Limits @95% ĈĽ

- Limits on aTGC ZZy and Zyy couplings are set(table shows limits on each constant in assumption of all other constants to be 0)

- Simultaneous limits on $h_3^{\gamma}/h_4^{\gamma}$ and h_3^{z}/h_4^{z} constants are set (backup slide 22)

- 7 TeV (4.6 and 5.0 fb⁻¹) result is $Zy \rightarrow I^+I^-y + Zy \rightarrow v\overline{v}y$ combined and provides the most stringent limits; $Zy \rightarrow v\overline{v}y$ donimates the sensitivity to aTGC

WW -> IvIv Final State [4]

Process signature: two leptons (e^+e^- , $\mu^+\mu^-$, $e^+\mu^-$, or μ^+e^-), and significant E_{τ}^{miss} due to neutrinos.

WW \rightarrow lvlv. Selection and Backgrounds

Event Selection:

- 2 well identified leptons with $p_{_{T}}^{_{lep}}\!\!>\!\!20$ GeV, $|\eta^{^{\mu}}|\!<\!\!2.4$ / $|\eta^{^{e}}|\!<\!\!2.5,$
- M^{II}>12 GeV, $p_{T}^{\mu\mu/ee}$ >45 GeV, $p_{T}^{\mu e}$ >30 GeV
- E_{T}^{miss} >20 GeV (due to neutrinos)
- veto on events with 3^{rd} lepton which passed $p_{1}>10$ GeV and certain quality criteria
- dilepton channels (ee, $\mu\mu,$ and $e\mu)$ are combined

For sample associated with 0 jets signal purity is 74%

Major Background:

- $t\bar{t}$, tW: estimated using top-tagged events and top-tagging efficiency determined from top-enriched sample

WW -> IvIv. Differential Cross Sections

- Differential cross sections as functions of 4 kinematic variables

- Results are compatible with the theory NNLO prediction
- *m*_" spectrum is used to derive limits on WWZ aTGC coupling

 $\frac{1}{\sigma} d\sigma (WW + 0 jets)/dp_{T,max}^{l}$

10-2

10

10

0.

0.5

20

ory / Data

Data

Data

CMS Preliminan

CMS Preliminary

- Data

19.4 fb⁻¹ (8 TeV)

19.4 fb⁻¹ (8 TeV

- Data

WW \rightarrow lvlv. aTGC Limits

$$i\mathcal{L}_{eff}^{WWV} = g_{WWV} \left[g_{1}^{V} V^{\mu} \left(W_{\mu\nu}^{-} W^{+\nu} - W_{\mu\nu}^{+} W^{-\nu} \right) + \widehat{\kappa_{V}} W_{\mu}^{+} W_{\nu}^{-} V^{\mu\nu} + \frac{1}{2} Standard Model: g_{1}^{Z} = g_{1}^{\gamma} = \kappa_{Z} = \kappa_{\gamma} = 1 + ig_{4}^{V} W_{\mu}^{-} W_{\nu}^{+} (\partial^{\mu} V^{\nu} + \partial^{\nu} V^{\mu}) - \frac{\tilde{\kappa}_{V}}{2} W_{\mu}^{-} W_{\nu}^{+} \varepsilon^{\mu\nu\rho\sigma} V_{\rho\sigma} - \frac{\tilde{\lambda}_{V}}{2m_{W}^{2}} W_{\rho\mu}^{-} W^{+\mu}_{\nu} \varepsilon^{\nu\rho\alpha\beta} V_{\alpha\beta} \right]$$

Constants derived from this WW \rightarrow lvlv analysis:

$$\mathcal{O}_{WWW} = \frac{c_{WWW}}{\Lambda^2} \operatorname{Tr}[W_{\mu\nu}W^{\nu\rho}W_{\rho}^{\mu}], \quad (\text{corr. to } \lambda_{\gamma})$$
$$\mathcal{O}_W = \frac{c_W}{\Lambda^2} (D^{\mu}\Phi)^{\dagger}W_{\mu\nu}(D^{\nu}\Phi), \quad (\text{corr. to } g_1^{\ Z})$$
$$\mathcal{O}_B = \frac{c_B}{\Lambda^2} (D^{\mu}\Phi)^{\dagger}B_{\mu\nu}(D^{\nu}\Phi). \quad (\text{corr. to } \kappa_{\gamma}, g_1^{\ Z})$$

			ATLAS Limits CMS Prel. Limits Do Limit LEP Limit	
Δĸ	<u>⊢</u>	WW	-0.043 - 0.043 4.6	β fb⁻¹
	⊢I	WV	-0.090 - 0.105 4.6	β fb⁻¹
	⊢ ⊣	WV	-0.043 - 0.033 5.0) fb ⁻¹
	⊢ ●–1	LEP Combination	-0.074 - 0.051 0.7	′ fb⁻¹
2		WW	-0.062 - 0.059 4.6	β fb⁻¹
/~Z	⊢	WW	-0.048 - 0.048 4.9) fb⁻¹
	H	WZ	-0.046 - 0.047 4.6	δ fb⁻¹
	⊢	WV	-0.039 - 0.040 4.6	β fb⁻¹
	⊢	WV	-0.038 - 0.030 5.0) fb ⁻¹
	For	D0 Combination	-0.036 - 0.044 8.6	β fb⁻¹
	⊨●H	LEP Combination	-0.059 - 0.017 0.7	′ fb⁻¹
Δo ^Z	\vdash	WW	-0.039 - 0.052 4.6	6 fb⁻¹
[⊥] 9 ₁	H	WW	-0.095 - 0.095 4.9) fb⁻¹
	⊢−−−−	WZ	-0.057 - 0.093 4.6	β fb⁻¹
	⊢I	WV	-0.055 - 0.071 4.6	β fb⁻¹
	⊢ 0 − −1	D0 Combination	-0.034 - 0.084 8.6	ն fb⁻¹
	H	LEP Combination	-0.054 - 0.021 0.7	′ fb ⁻¹
-0.5	0	0.5 1	1.5	
0.0		aTGC L	imits @95%	C.L.

Coupling constant	This result 95% interval	World average
1 0	$({\rm TeV}^{-2})$	(TeV^{-2})
c_{WWW}/Λ^2	[-5.7, 5.9]	-5.5 ± 4.8 (from λ_{γ})
c_W/Λ^2	[-11.4, 5.4]	$-3.9^{+3.9}_{-4.8}$ (from g_1^Z)
c_B/Λ^2	[-29.2, 23.9]	$-1.7^{+13.6}_{-13.9}$ (from κ_{γ} and g_1^Z)

- Limits in assumption of all other coupling constants to be 0 are set

- Simultaneous limits from varying two constants at the same time are set (backup slide 23)

Results are consistent with the Standard Model prediction

Results from other analyses

WVy (WZy+WWy) and aQGC Searches [8]

Process signature: lepton, significant E_{T}^{miss} due to neutrino, two hadronic jets, and photon; WZy+WWy combined

WVy (WZy+WWy). Selection and Backgrounds <u>Event Selection:</u>

- 1 well identified lepton, 2 well identified jets with 70 < m_{μ} < 100 GeV
- E_{τ}^{miss} >35 GeV (due to neutrino)
- WWy+WZy are combined, two channels treated separately: (ev_)(jj)y and $(\mu\nu_{\mu})(jj)y$

Major Background:

- **Wy+jets:** shape taken from MC, normalization estimated using fit in $m_{jj} < 70$ GeV and $m_{jj} > 100$ GeV ranges

Total uncertainty is larger than signal therefore cross section can not be measured, only upper limit on total cross section is possible

aQGC would cause enhance at high E_{T}^{γ}

WVy (WZy+WWy). aQGC Limits

All results are consistent with the Standard Model prediction

Conclusions

- The latest results on aTGC and aQGC searches with Zy, WW, WVy productions with 7 TeV and 8 TeV data in CMS are presented
- > The most stringent to date limits on ZZy, Zyy aTGC couplings are set
- The first ever limit on WWZy aQGC coupling is set
- \succ Limits on WWZ, WWyy anomalous coupling constants are set
- Other aTGC and aQGC analyses, not covered in this talk, have been performed in CMS (see slide 4)
- > All results are consistent with the Standard Model prediction
- Several more 7 TeV and 8 TeV measurements are in progress
- More opportunities are expected with 13 TeV data

BACKUP SLIDES

CMS. Particle Detection General View

CMS. ¹/₄ section in z-r plane

Production Cross Sections

Zy [1], [2], [3]. Simultaneous aTGC Limits

WW \rightarrow lvlv [4]. Simultaneous aTGC Limits

