Two-Photon Exchange in Electron Proton Scattering - Status of OLYMPUS Experiment at DESY

PHOTON 2015 Novosibirsk

Uwe Schneekloth, DESY

on behalf of the OLYMPUS Collaboration

Outline

- Introduction and Motivation
- Overview of the Experiment
- > Schedule
- Data Taking Periods
- Performance
- Radiative Corrections
- Status of Analysis
- Conclusions

Elastic e N Scattering/Form Factors

Nucleon elastic form factors: electric G_E and magnetic G_M

- Fundamental observables describing distribution of charge and magnetism in proton and neutron
- Described by quark structure of proton
- Will be calculable in lattice QCD
- For ~ 50 years unpolarized cross section measurements have determined G^p_E and G^p_M using the Rosenbluth separation

$$\frac{d\sigma/d\Omega}{(d\sigma/d\Omega)_{Mott}} = \frac{\sigma}{\sigma_0} = A(Q^2) + B(Q^2) \tan^2 \frac{\theta}{2} \qquad \sigma_{red} = \frac{d\sigma}{d\Omega} \frac{\varepsilon(1+\tau)}{\sigma_{Mott}} = \sigma_{Mott}^2 + \varepsilon G_E^2$$

$$= \frac{G_E^2(Q^2) + \tau G_M^2(Q^2)}{1 + \tau} + 2\tau G_M^2(Q^2) \tan^2 \frac{\theta}{2} \qquad \tau = Q^2 / 4M_p^2 \qquad \varepsilon = \left[1 + 2(1 + \tau) \tan^2 \theta / 2\right]^{-1}$$

$$\tau = Q^2 / 4M_p^2$$
 $\varepsilon = [1 + 2(1 + \tau) \tan^2 \theta / 2]^{-1}$

(ε transverse virtual photon polarization)

Form Factors - Rosenbluth Method

Reduced cross section

$$\sigma_{\text{red}} = \varepsilon G_{\text{E}}^2 + \tau G_{\text{M}}^2$$

 \rightarrow Determine $|G_E|$, $|G_M|$, $|G_E/G_M|$

Motivation of OLYMPUS Experiment

Proton Form Factor Ratio

- > All Rosenbluth data in agreement
- Dramatic discrepancy between Rosenbluth and recoil polarization technique
 - Jefferson Lab data (>800 citations) polarized beam and target
- Interpreted as evidence for two photon contribution to elastic scattering

Motivation of OLYMPUS Experiment

Two-Photon-Exchange

- Large theoretical model uncertainties
- Only experiment can definitively resolve the contributions beyond single photon exchange
- Determine TPE by measuring ratio of e⁺p/e⁻p, i.e. ratio of rates, no absolute cross section measurements

$$\sigma(e^{-}p) = |M_{1\gamma}|^{2} \alpha^{2} - 2 |M_{1\gamma}| |M_{2\gamma}| \alpha^{3} + \dots$$

$$\sigma(e^{+}p) = |M_{1\gamma}|^{2} \alpha^{2} + 2 |M_{1\gamma}| |M_{2\gamma}| \alpha^{3} + \dots$$

$$R = rac{\sigma(e^+p)}{\sigma(e^-p)} = 1 + rac{4 \Re(M_{1\gamma}^\dagger M_{2\gamma})}{|M_{1\gamma}|^2}$$

OLYMPUS Experiment at DORIS

Elastic e⁺(e⁻) p scattering at 2 GeV beam energy

- Measure ratio of e⁺p/e⁻p rates with 1% precision
- DORIS 100 mA e⁺(e⁻) beam
- Unpolarized internal hydrogen target, density 3 x 10¹⁵ at/cm²
- Daily change of beam (e⁺ or e⁻) to minimize systematic error
- Redundant luminosity measurements
- Using former BLAST detector from MIT/ Bates. Ideally suited.

Comparison of data and theory

Schedule and Progress

- > 2010: Blast detector shipped from MIT to DESY, assembled in parking position
- > 2011
 - February: Interaction region modified, test experiment
 - Summer: Detector moved in to beam position
- > 2012 data taking
 - February: first data taking period
 - Fall: second data taking period 22.10.2012 2.01.2013
 - Exceeded integrated luminosity: design 3.6 fb⁻¹, achieved 4.45 fb⁻¹
- > 2013
 - Cosmic ray run
 - Complete survey
 - New magnetic field map
 - Beam position monitor calibration
 - Reconstruction/data analysis
- > 2014/15: Reconstruction/data analysis

Detector Overview

Target System

- Internal, windowless gas target
- > 60 cm long storage cell
- Elliptical cross section (27 mm x 9 mm)
- 100 µm thick aluminum wall
- > H₂ flows up to 1 sccm
- Cryo cooled ~45 K
- > O(10¹⁵) atoms/cm²
- Hydrogen produced by generator (electrolysis)

INFN Ferrara, MIT

Toroidal Magnet

- > 8 air coils from BLAST
- Operating at reduced field
- Positive and negative polarity
- > Maximum field 0.28 T

Drift Chambers

- > Two chambers, trapezoidal shape
- > Jet-style drift cells
- > 5000 wires each
- > Tracks with 18 hits

> 10° stereo angle

Time – of - Flight Counters

- Scintillation counters from BLAST
- Trigger
 - Top/bottom coincidence
 - Kinematic constraint
 - + 2nd level wire chamber
- Time-of-flight for particle ID

Luminosity Determination

Three independent measurements

- Slow Control
 - Beam current and target density
 - 15 20% absolute uncertainty, relative <5%
- > Tracking telescopes at 12°
 - Elastic ep scattering at small angles
 - Two independent sectors with independent tracking systems: MWPCs and GEMs
 - Use combined information or separately for cross checks
- Møller/Bhabha monitor at 1.3°
 - High statistics measurement, no dead time

Need e⁺p/e⁻p luminosity ratio, not precise absolute luminosity

Detector before Roll-in July 2011

DataTaking in 2012

OLYMPUS Luminosity

Limited flow and luminosity in Feb. run

Fall run

- > Full hydrogen flow
- DORIS top-up mode
- > Excellent performance
- Exceeded integrated luminosity:
 - Design 3.6fb⁻¹, achieved 4.45fb⁻¹
- Daily switch of beam species, good balance
- Mainly positive toroid polarity due to background
- Negative field for systematics checks

Møller/Bhabha Luminosity Monitor

- Independent luminosity measurement at 1.3°
- In addition, can detect lepton from e p scattering
- Cross check energy calibration and rate estimate
- Rates are corrected for beam positions and slopes

OLYMPUS Monte Carlo

- Utilizing advanced Monte Carlo simulation to account for:
 - Beam position/slope
 - Detector acceptance/geometry
 - Detector resolution and response
 - Detector efficiencies
 - Radiative corrections (radiative e[±] p and Møller/Bhabha generators developed)
- Recent improvements:
 - Refinement of detector geometry model
 - Implementation of multiple generator weights for radiative generator systematic studies
 - Molecular flow Monte Carlo simulation of target gas flow to improve MC target distribution

Target Gas Simulation

- Molecular flow Monte Carlo simulation of target more realistic than conductance-based calculation
- Important to get shape of target distribution correct since e[±] acceptance can vary along target

Radiative Corrections

Independent elastic e[±]p generators written at MIT (weighted)

- Radiative corrections include:
 - Initial and finale state beamsstrahlung for lepton and proton, vertex corrections, vacuum polarization and soft two photo exchange

Hard two photon exchange not included

Møller/Bhabha generator with radiative corrections written at MIT

Luminosity Analysis

- Presently focusing on tracking of e[±]p events in 12° luminosity telescopes
 - Detailed simulation of target distribution has significantly improved data/MC comparison
 - Geometry description improved
 - MWPC digitization re-written, including handling of defective wire and multi-wire hits
 - Tracking code improved
 - TOF meantime used to identify recoil proton

Very good agreement with "slow control" luminosity

Drift Chamber Tracking Improvements

- Recent tracking improvements
 - Geometry description
 - Minimization routine
 - Including TOF hits as additional track points (resolves ambiguities)
 - Expansion of elastic pattern library used by tracker
- October, 2014
 Current tracker -10° -5° $\theta_{l} \theta_{l}(\theta_{p})$

- Advanced methods to recover difficult tracks
- Time-to-distance fits expanded to include all runs (so far using 1000 runs)

Status as of early May

Data Analysis

Selection cuts on

- Coplanarity
- Vertex correlation
- $> \theta_{\rm e}, \theta_{\rm p}$ correlation
- \rightarrow p, θ correlation
- > Event time correlatio

Reconstructed Beam Energy

Data Analysis

Selection cuts on

- Coplanarity
- Vertex correlation
- $> \theta_e, \theta_p$ correlation
- > p, θ correlation
- Event time correlation

Systematic studies in progress

- In early May observed few percent left/right asymmetry
- Found and fixed a few problems with reconstruction
- Newly reconstructed data sample almost ready
- > Aiming at < 1% systematic uncertainty on e⁺/e⁻ ratio</p>

Conclusions

- Study of two photon exchange important for understanding proton form factor ratio disagreement
 - Two other experiments at Novosibirsk and JLab
- Former BLAST detector moved from MIT/Bates to DORIS accelerator at DESY and reassembled
- Very successful data taking in 2012
- Data reconstruction and analysis well advanced
- Large effort to understand systematic uncertainties to achieve ratio measurement at 1% level
- > Preliminary results on the full data set available fall this year

OLYMPUS Collaboration

Institutes

- Arizona State University, USA
- > DESY
- Hampton University, USA
- > INFN, Bari, Italy
- INFN, Ferrara, Italy
- INFN, Rome, Italy
- > MIT, USA
- Petersburg Nucl. Phys. Inst.
- > Universität Bonn, Germany
- University of Glasgow
- Universität Mainz, Germany
- Univ. of New Hampshire, USA
- > Yerevan Physics Inst., Armenia

45 physicists

