

Latest results on Higgs final-states with photons in CMS

Junquan Tao (IHEP, Beijing) on behalf of the CMS collaboration

CMS

15-19 June, 2015

中國科學院為能物招加完所 Institute of High Energy Physics Chinese Academy of Sciences

1

In this talk ...

• H $\rightarrow \gamma \gamma$ decay Eur. Phys. J. C (2014) 74:3076

- One of the most sensitive channels at the LHC.
- Loop-mediated decay: measurement of $H \rightarrow \gamma \gamma$ coupling sensitive to BSM physics.

$\clubsuit H \rightarrow II\gamma \text{ decay}$

• Loop-mediated $H \rightarrow Z \gamma$ decay: small branching fraction but sensitive to BSM effects Physics Letters B 726 (2013) 587–609

• "Dalitz mode" $H \rightarrow \gamma^* \gamma \rightarrow u^+u^-\gamma$: sensitive to new-physics due to loops *CMS-PAS-HIG-14-003*

↔ Double Higgs production through HH \rightarrow bb $\gamma\gamma$

Sensitive to Higgs self-coupling. CMS-PAS-HIG-13-032

Excellent performance of the LHC machine and CMS detector in Run 1:

- ~90% of the delivered data available for offline analysis.
- ~5fb⁻¹ at 7TeV + ~20fb⁻¹ at 8TeV

Challenging pile-up conditions

Average PU ~10 events in 2011 and ~20 events in 2012

CMS Integrated Luminosity, pp

Signature: > 2 high pT isolated photons > Excellent mass resolution (1-2%) > Large QCD background

Optimizations on photon objects and events reconstruction to improve s/b:

- Narrow resonance: good mass resolution
 - photon energy : regression in MVA
 - Vertex identification: TMVA BDT classifier: Vertex tracks pT2, recoil information, pointing information converted photons.

Also uses a second BDT to estimate probability of correct assignments

Large Background: Photon identification

- Using BDT classifier (also cross check with categorized cut-base ID)
- Looser cut on BDT: >-0.2, keeping 99% MC sig while removing ~24% of events in data
- Two photon BDTs as inputs of eventclassification BDT
- **Modelling** in data using $Z \rightarrow ee$ and $Z \rightarrow II\gamma$ FSR

Analysis strategy (2)

terms of additional object in event (jets, $\overleftarrow{t}_{0,10^3}$ leptons, missing ET) to enhance sensitivity to VBF and associated production (WH/ZH/ttH).

Remain events are classified based on diphoton **BDT** combining kinematics and mass resolution.

19.7 fb⁻¹ (8 TeV)

Signal and background modelling for

Analysis strategy (3)

 statistical methodology:
 ➢ Signal model is derived from MC simulation after applying the corrections determined from data/MC comparisons of Z \rightarrow e⁺e⁻ and Z \rightarrow u⁺u⁻ γ events

Background modelling:

- Using m_{γγ} sidebands to constrain bkg
 Choice of bkg functional form: potential biases are small (namely <~15% of the statistical uncertainty)
- Discrete profiling method: choice of bkg model as a discrete nuisance parameter (difference *between models included in uncertainties*)
- Ensure that the resulting model is equivalent to other possible choices allowed by the data

Results from H $\rightarrow \gamma\gamma$ (1)

$H \rightarrow \gamma \gamma$ channel provides the best

measurement of m_H:

$\widehat{m}_{\rm H} = 124.70 \pm 0.31 \,({\rm stat}) \pm 0.15 \,({\rm syst}) \,\,{\rm GeV}$

> To minimize model dependence, production modes signal strengths are allowed to vary independently.

Consistent analysis for mass and overall signal strength.

 ✓ From signal strength to couplings: "kframework", simplest parametrization of Higgs-couplings deviations from SM values

$$\mu_{pd} = \frac{k_p^2 \cdot k_d^2}{k_H^2}$$

✓ Can test different assumptions on relation between k's: couplings to vector bosons (κ_v) and to fermions(κ_f) coupling to photons (κ_y) and to gluons (κ_g)

Set upper limit on the width of the observed signal @ 95% CL: Observed: 2.4GeV Expected: 3.1GeV

➢ Higgs decay channels with 2 leptons and a photon are not as sensitive as H → γγ channel.

> Important to study:

• $H \rightarrow Z\gamma$: Loop mediated HZ γ coupling.

• "Dalitz mode" $H \rightarrow \gamma^* \gamma \rightarrow u^+u^-\gamma$: sensitive to newphysics due to loops

$H \rightarrow Z\gamma \rightarrow II\gamma$

$\mathbf{H} \rightarrow \gamma^* \gamma \rightarrow \mathbf{u}^+ \mathbf{u}^- \gamma$

- > Analysis strategy
 - Basic selections on objects
 - Limits from simultaneous fit to m_{uuy}

> First limit of σ^*BR of $H \rightarrow \gamma^* \gamma \rightarrow u^+u^-\gamma$ at LHC

Observed limit for $m_{uu\gamma}$ at 125 GeV and m_{uu} < 20 GeV: ~ 10 x SM

Double Higgs production

Long term goal is to constrain Higgs field self-coupling

- HH \rightarrow bb $\gamma\gamma$ is the most promising channel
- Expect 1-2σ sensitivity for 3000 fb⁻¹

For LHC Run 1 (and 2) focus is on resonant production.

Set limit on exotic physics and extended Higgs sector

9 00000

Results of HH \rightarrow bb $\gamma\gamma$

- > CMS performed X \rightarrow HH \rightarrow yybb with m_x [260, 1100] GeV
- Observations are consistent with expectations from SM
- > Results interpreted in terms of warped extra dimensional (WED) models

Summary

Results on Higgs final-states with photons in CMS are summarized and presented

→ γγ channel is one of the most sensitive ones
 ✓ Higgs observation: 5.7σ (5.2σ) observed (expected) @ 124.7GeV
 ✓ Mass: 124.70 ± 0.31 (stat) ± 0.15 (syst) GeV
 ✓ Properties (strength, couplings,..) are consistent with SM predictions

> Search for rare decays of $H \rightarrow II\gamma$ allow to constrain BSM contributions to Higgs decay loops

> In the long run HH \rightarrow bb $\gamma\gamma$ expected to provide information on the Higgs field self-coupling

Backup

Additions of $H \rightarrow \gamma \gamma$ (1)

Additions of $H \rightarrow \gamma \gamma$ (2)

Label	No. of classes		Main requirements			Expected SM Higgs boson signal yield ($m_{\rm H}$ =125 GeV)							Bkg.	
	7 TeV 8 1	8 TeV	$n_{\rm r}^{\gamma 1} > m_{\rm exc}/2$		vent classes	Total	ggH	VBF	WH	ZH	tīH	$\sigma_{\rm eff}$ (GeV)	(GeV)	(GeV ⁻¹)
ttH lepton tag	*	1	1 b-tagged jet + 1 electron or muon		Untagged 0	5.8	79.8%	9.9%	6.0%	3.5%	0.8%	1.11	0.98	11.0
VH tight ℓ tag	1	1	$p_{\rm T}^{\gamma 1} > 3m_{\gamma \gamma}/8$		Untagged 1	22.7	91.9%	4.2%	2.4%	1.3%	0.2%	1.27	1.09	69.5
			[e or μ , $p_{ m T}$ > 20 GeV, and $E_{ m T}^{ m miss}$ > 45 GeV] or		Untagged 2	27.1	91.9%	4.1%	2.4%	1.4%	0.2%	1.78	1.40	135.
			[2e or 2μ , $p_{\rm T}^{\ell} > 10 {\rm GeV}$; $70 < m_{\ell\ell} < 110 {\rm GeV}$]	17	Untagged 3	34.1	92.1%	4.0%	2.4%	1.3%	0.2%	2.36	2.01	312.
VH loose ℓ tag	1	1	$p_{\rm T}^{\gamma 1} > 3m_{\gamma \gamma}/8$	14	VBF dijet 0	1.6	19.3%	80.1%	0.3%	0.2%	0.1%	1.41	1.17	0.5
			e or μ , $p_{\rm T} > 20 {\rm GeV}$	o l	VBF dijet 1	3.0	38.1%	59.5%	1.2%	0.7%	0.4%	1.65	1.32	3.5
VBF dijet tag 0-2	2	3	$p_{\mathrm{T}}^{\gamma_1} > m_{\gamma\gamma}/2$	lev	VH tight ℓ	0.3	_	—	77.2%	20.6%	2.2%	1.61	1.31	0.1
	2		2 jets; classified using combined diphoton-dijet BDT	1	VH loose ℓ	0.2	3.6%	1.1%	79.1%	15.2%	1.0%	1.63	1.32	0.2
VH $E_{\rm T}^{\rm miss}$ tag	1	1	$p_{\rm T}^{\gamma 1} > 3m_{\gamma \gamma}/8$		VH E _T ^{miss}	0.3	4.5%	1.1%	41.5%	44.6%	8.2%	1.60	1.14	0.2
	•		$E_{\rm T}^{\rm muss} > 70 {\rm GeV}$		VH dijet	0.4	27.1%	2.8%	43.7%	24.3%	2.1%	1.54	1.24	0.5
tīH multijet tag	*	1	$p_{\rm T}^{\gamma_1} > m_{\gamma\gamma}/2$		ttH tags	0.2	3.1%	1.1%	2.2%	1.3%	92.3%	1.40	1.13	0.2
			1 b-tagged jet + 4 more jets		Untagged 0	6.0	75.7%	11.9%	6.9%	3.6%	1.9%	1.05	0.79	4.7
VH dijet tag	1	1	$p_{\rm T}^{\gamma_{\rm T}} > m_{\gamma_{\rm T}\gamma}/2$		Untagged 1	50.8	85.2%	7.9%	4.0%	2.4%	0.6%	1.19	1.00	120.
			jet pair, $p_{\rm T}^{\rm J} > 40 {\rm GeV}$ and $60 < m_{\rm jj} < 120 {\rm GeV}$		Untagged 2	117.	91.1%	4.7%	2.5%	1.4%	0.3%	1.46	1.15	418.
Untagged 0-4	4	5	The remaining events,	- -	Untagged 3	153.	91.6%	4.4%	2.4%	1.4%	0.3%	2.04	1.56	870.
		ta in	classified using diphoton BDI		Untagged 4	121.	93.1%	3.6%	2.0%	1.1%	0.2%	2.62	2.14	1400.
* For the 7 lev a	E	VBF dijet 0	4.5	17.8%	81.8%	0.2%	0.1%	0.1%	1.30	0.94	0.8			
inst, and combined to form a single event class.				9.7	VBF dijet 1	5.6	28.5%	70.5%	0.6%	0.2%	0.2%	1.43	1.07	2.7
				1	VBF dijet 2	13.7	43.8%	53.2%	1.4%	0.8%	0.8%	1.59	1.24	22.1

8 TeV

VH tight ℓ

VH loose ℓ

VH $E_{\rm T}^{\rm miss}$

VH dijet

ttH lepton

ttH multijet

1.4

0.9

1.8

1.6

0.5

0.6

0.2%

2.6%

16.3%

30.3%

4.1%

0.2%

1.1%

2.7%

3.1%

0.9%

76.9%

77.9%

34.4%

40.6%

1.6%

0.8%

	ĥ	\widehat{m}_{H} (GeV)
7 TeV	$2.22^{+0.62}_{-0.55}$	124.2
8 TeV	$0.90\substack{+0.26\\-0.23}$	124.9
Combined	$1.14\substack{+0.26\\-0.23}$	124.7

3.7%

1.5%

11.1%

2.6%

96.8%

93.3%

1.63

1.60

1.68

1.31

1.34

1.34

1.24

1.16

1.17

1.06

1.03

1.03

22.1

0.4

1.2

1.3

1.0

0.2

0.6

19.0%

16.8%

35.4%

23.4%

1.6%

0.9%

Additions of HH

✓ HH production in SM
 (pp→HH) ~10 fb at 8TeV
 ✓ Nonresonant HH
 production in beyond SM:
 can be enhanced by
 altering the couplings of
 the Higgs
 ✓ Becompart HH

✓ Resonant HH production in beyond SM

CMS (Unpublished)

∖s = 8 TeV

Уt

 C_2

