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The problem: a first principle QCD description for the TFF

HIGH ENERGIES (pQCD) Tp(z, Q%) @p(x, pr)

e Space-like (SL) Fpy-\ (@2, Q3)

oy (G} @8) = [ dx Tu(x. 0710 !
® ¢p(x, ur) non-pert. - MODELLED! Froye (0,00)=2F, Q2
o Tu(x, Q) perturbative in as(Q?) Frnxyx (00,00)=(2/3)Fr Q™2
LOW ENERGIES (xPT v -
(X ) W\/Lr - 1‘\ P
e ABJ anomaly prediction Fp,-(0,0) P @ -~

e Extensions for Q% > 0 poor (vectors)

e MODEL the vectors (i.e.. RxPT) Frer(0,0)=(47Fr) !
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Padé Approximants: Introduction to the method

Given a function with known series expansion
Fpyn (@) = Fpyrye (0)(1 + bp @ + cpQ* +...)
Its Padé approximant is defined as

2
Pu(@) = ,;A;Egz; = Fpore (0)(1 + bp @ + cpQ* + ... + O(Q)NHM+H1)

Convergence th. = Model-independency

Increase{N, M} = Systematic error estimation

_ FP’Y’Y*(O)

0
=100

= Fpyr(0)(1 + bp@% + ... + O(Q*)) WX

‘ Correct low energy implementation! ‘
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What about the double virtual Fp.«.(Q?, Q3) ?

Extend Padé approximants to bivariate case (Chisholm '73)

Fp1+(0,0)
(QF + @)+ (2b7 — a1.1)(Qf Q3)

G(QF &) = 74

—Properties

1.Reproduce original series expansion = low energies

2.Reduce to Padé Approximants (already determined)

FP'W(O: 0)

1— bpQ? - P?(QQ)

C(Q%0) =
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What about the double virtual Fp.«.(Q?, Q3) ?

Extend Padé approximants to bivariate case (Chisholm '73)

Fp1+(0,0)
(QF + @)+ (2b7 — a1.1)(Qf Q3)

G(QF &) = 74

—Properties

1.Reproduce original series expansion = low energies
2.Reduce to Padé Approximants (already determined)
3.Can incorpore QCD constrains from OPE

Fp++(0,0)

— o . =2b3) OPEV
T (@ + @) (=2

C(QF, Q3)|ore =
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What about the double virtual Fp.«.(Q?, Q3) ?

Extend Padé approximants to bivariate case (Chisholm '73)

Fp1+(0,0)
(QF + @)+ (2b7 — a1.1)(Qf Q3)

G(QF &) = 74

—Properties

1.Reproduce original series expansion = low energies

2.Reduce to Padé Approximants (already determined)

3.Can incorpore QCD constrains from OPE

4.Can be factorized as hinted by xPT (low-energies) leading logs

Fp1+(0,0)
(1+bpQF)(1 + brQ3)

v (a1 = b,2:) Factorization

CH@7, @)|ore =
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Motivation and Introduction to the Method
Extending Padé Approximants: Chisholm Approximants

What about the double virtual Fp.«.(Q?, Q3) ?

Extend Padé approximants to bivariate case (Chisholm '73)

Fp1+(0,0)
(QF + @)+ (2b7 — a1.1)(Qf Q3)

G(QF &) = 74

—Properties

1.Reproduce original series expansion = low energies

2.Reduce to Padé Approximants (already determined)

3.Can incorpore QCD constrains from OPE

4.Can be factorized as hinted by xPT (low-energies) leading logs

Parameter a; ; from data = Low-energies ... But not available!
Take generous range a;1 € {0+ 2b3} (includes OPE, fact)
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(g — 2),: hadronic light-by-light
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Results for (g — 2),
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(g — 2),: hadronic light-by-light
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KNECHT & NYFFELER: 70,7, 7'-EXCHANGE

e Loop integral involving Fp«+(QF, Q3)
e SL low energy regime — our PAs are good
e Multiscale: low-high energies
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Results for (g — 2),

(g — 2),: hadronic light-by-light

OUR RESULTS FROM BIVARIATE PADE APPROXIMANTS

Units of 10-10 0 n n Total

a11 =265 [OPE]  6.64(33) 1.69(6) 1.61(21) 9.94(40)s2r(50)0s
a1 = b3 [Fact] 5.53(27) 1.30(5) 1.21(12) 8.04(30)st(40)sys
a1=0 5.10(23) 1.16(7) 1.07(15) 7.33(28)eat(37)sys

al/"?tP = (9.94(40)(50) + 7.33(28)(37)) x 10

Big uncertainty from double-virtual term often non-considererd
High-energies vs. Low-energies

To be compared with pseudoscalar-pole contributions in the literature
BPP: 8.5(1.3); HKS: 8.6(0.6); KN: 8.3(1.2)



Pseudoscalar-exchange contribution to (g — 2),, from rational approximants — and connection to P — 20 decays —

Connection to P — 24

Section 3

Connection to P — ¢/




Pseudoscalar-exchange contribution to (g — 2),, from rational approximants — and connection to P — 24 decays —

Connection to P — ££
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At LO in agpy, this process occurs via 2y intermediate state.

P. Masjuan, P. Sanchez, arXiv:1504:07001
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P — /¢ decays: Introduction

At LO in agpy, this process occurs via 2y intermediate state.

BR(P — eTe™) > (amg

BR(P — vv) Tmp
2y 2 / 4 9k — (k- q)? : .
A= | TR am— gt — k2 =) [P (K (a=k))

P. Masjuan, P. Sanchez, arXiv:1504:07001
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Connection to P — ££

P — /¢ decays: Introduction

At LO in agpy, this process occurs via 2y intermediate state.

,
.
BR(P — ete~ 2
v ey =2 () () AP
2i 2k2 — (k- 2 —
A(q2) = 7r2;.2 /d4k K2(k qq)z((p( kC;)2 — m2) FPw*v*(kzv(q - k)2)

‘Again peaked at low (mainly) SL energies! ‘

P. Masjuan, P. Sanchez, arXiv:1504:07001
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Case I: 70 — ete™

There has ben a lot of activity since the latest experimental result

BRKTeV (70 — ete~) = 7.48(38) x 1078
BR™" (1 — ete~) = 6.23(09) x 108

Which represents a 30 deviation

P. Masjuan, P. Sanchez, arXiv:1504:07001
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Taking into account last radiative corrections results —Husek et al. '14
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Which represents a 1.70 deviation

P. Masjuan, P. Sanchez, arXiv:1504:07001
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Connection to P — ££

Case I: 70 — ete™

Taking into account last radiative corrections results —Husek et al. '14

BRKTeV (70 s ete~) = 6.87(36) x 10~8
BRTh(r° — ete~) = 6.23(09) x 10~8

Which represents a 1.70 deviation

Still, no model can reproduce such value
Fpr«ne(QF, Q3) enters in HLbL = impact?

What have to say our approximants?

— Use the simplest approximant — ]
C(QF @) =

1+ bp(Q%+ Q2)+ (262 — 211)R?Q3

P. Masjuan, P. Sanchez, arXiv:1504:07001
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Connection to P — ££

Case I: 70 — efe™

Our REsSULT
BR(m® — ete™) = (6.20 + 6.41)(5) x 1078; a1 ; € {2b% + 0} J

Accepted value: 6.23(9) x 10~8(Dorokhov et.al. '07) = UNDERESTIMATED

P. Masjuan, P. Sanchez, arXiv:1504:07001
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Our REsSULT
BR(m® — ete™) = (6.20 + 6.41)(5) x 1078; a1 ; € {2b% + 0} J

Accepted value: 6.23(9) x 10~8(Dorokhov et.al. '07) = UNDERESTIMATED

HYPOTHETIC DOUBLE-VIRTUAL DATA BELOW 1GEV 30% ERROR

BR(m® — ete™) = 6.36(5)p, (4)a, (6)sys X 108 — 6.36(8) x 108 J

P. Masjuan, P. Sanchez, arXiv:1504:07001
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Connection to P — ££

Case I: 70 — efe™

Our REsSULT
BR(m® — ete™) = (6.20 + 6.41)(5) x 1078; a1 ; € {2b% + 0} J

Accepted value: 6.23(9) x 10~8(Dorokhov et.al. '07) = UNDERESTIMATED

HYPOTHETIC DOUBLE-VIRTUAL DATA BELOW 1GEV 30% ERROR

BR(m® — ete™) = 6.36(5)p, (4)a, (6)sys X 108 — 6.36(8) x 108 J

FiX a;; To EXPERIMENT = (g — 2),, IMPACT?

aHblin" — (5.10 + 6.64)101° = 2.85 x 10~ 1° l

P. Masjuan, P. Sanchez, arXiv:1504:07001
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Case Il: n(n') — ¢¢  (Work in Progress)

Integral is sensitive to time-like up to m%

P. Masjuan, P. Sanchez, In preparation
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Case Il: n(n') — ¢¢  (Work in Progress)

Unitary Bound, |A|? > Im(A)2.,, BREAKS

7Y

First Im(A) estimation ever: realistic (toy)models
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P. Masjuan, P. Sanchez, In preparation
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Case Il: n(n') — ¢¢  (Work in Progress)

Unitary Bound, |A|? > Im(A)2.,, BREAKS

7Y

A

)
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n L e

First Im(A) estimation ever: realistic (toy) models
n: Im(rm)/Im(yy) = — 0.5%
i Im(p,w)/Im(17) = — 20%

P. Masjuan, P. Sanchez, In preparation
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Case Il: n(n') — ¢¢  (Work in Progress)

Unitary Bound, |A|? > Im(A)2.,, BREAKS
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First Im(A) estimation ever: realistic (toy) models
n: Im(wm)/Im(yy) =—0.5%
i Im(p,w)/Im(y7) =—20%

P. Masjuan, P. Sanchez, In preparation
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Connection to P — ££

Case Il: n(n') — ¢¢  (Work in Progress)

Unitary Bound, |A|? > Im(A)2.,, BREAKS

7Y

First Im(A) estimation ever: realistic (toy) models
n: Im(wm)/Im(yy) =—0.5%
i Im(p,w)/Im(y7) =—20%

For the 7 negligible: take C? and include a syst. (1%) error
For the ' combine C? and resonance description

P. Masjuan, P. Sanchez, In preparation



Pseudoscalar-exchange contribution to (g — 2),, from rational approximants — and connection to P — 24 decays —

Connection to P — ££

Case ll: n — ¥/

OUR C RESULT [EXACT] - (PRELIMINARY RESULTS)

n— ee” = (5.31 +5.44)(T})107°
n— wtpT = (4.52 = 4.72)(7%)107°

P. Masjuan, P. Sanchez, In preparation
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Connection to P — ££

Case ll: n — ¥/

OUR C RESULT [EXACT] - (PRELIMINARY RESULTS)

n— ee” = (5.31 +5.44)(T})107°
n— wtpT = (4.52 = 4.72)(7%)107°

ACCEPTED VALUES [APPROXIMATED]: Dorokhov '10

n—ete” =4.53(9) x 107°
n— pp~ =5.35(27) x 107°

COMPARE TO EXPERIMENT

n—ee” <2.3x107° HADES 14
n— ' p~ =5.8(8) x 107° SATURNE I 04

P. Masjuan, P. Sanchez, In preparation
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Connection to P — ££

Case Il: 1 — ¢

OUR C{ & COMBINED RESULTS [EXACT] - PRELIMINARY RESULTS

C{) +Res

n — ete” = (1.82+1.86)(7)1071° 22— (1.73 + 1.77)(7)10™*°
0 es
0= ptu = (1.36 + 1.49)(5)10~7 2%, (1,22 +1.35)(5)10~7

P. Masjuan, P. Sanchez, In preparation
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Case Il: 1 — ¢

OUR C{ & COMBINED RESULTS [EXACT] - PRELIMINARY RESULTS

C{) +Res

n — ete” = (1.82+1.86)(7)1071° 22— (1.73 + 1.77)(7)10™*°
0 es
0= ptu = (1.36 + 1.49)(5)10~7 2%, (1,22 +1.35)(5)10~7

ACCEPTED VALUES [APPROXIMATED]: Dorokhov '10

n— ee” =1.182(14) x 107 1°
n— wtp~ =1.364(10) x 1077

P. Masjuan, P. Sanchez, In preparation



Pseudoscalar-exchange contribution to (g — 2),, from rational approximants — and connection to P — 24 decays —

Connection to P — ££

Case Il: 1 — ¢

OUR C{ & COMBINED RESULTS [EXACT] - PRELIMINARY RESULTS

C{) +Res

n — ete” = (1.82+1.86)(7)1071° 22— (1.73 + 1.77)(7)10™*°
0 es
0= ptu = (1.36 + 1.49)(5)10~7 2%, (1,22 +1.35)(5)10~7

ACCEPTED VALUES [APPROXIMATED]: Dorokhov '10

n— ee” =1.182(14) x 107 1°
n— wtp~ =1.364(10) x 1077

COMPARE TO EXPERIMENT

n — ete™ <5.6 x 1077 (SND+cmMD-) ‘15 ’
n =T =—

P. Masjuan, P. Sanchez, In preparation
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Connection to P — ££

Conclusions & Outlook

Rational Approximants have been used to describe the TFF

Is data driven: better data, better description and easy to apply

Precise low-energies but QCD constraints as well

We calculated (g — 2)//**5F and P — €/ with systematics

o m—efe, n— ptp discrepancy = (g — 2)HPHP, New Phys.?

y*y* — P (allows C? — C}) and P — ¢/ required

Future: pQCD matching, including cuts and resonance appropriately
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sum rules for LbL scattering (l)

A1, q1 L a V(AL @) + 7 (A2, ¢2) = V(AL @) + 7 (A, q2)

o,

kinematical invariants:

LH/H/L s = (q1 + 612)2, u = (q1 — Q2)2

/ S — U
A2: Q2 25 G2 v=——, Qi=-q, Q3=-¢
helicity amplitudes: Mz aan (v, QF, Q3) A=0,=£1
discrete symmetries: mmp 8 independent amplitudes:
P My ane = Moxi—xg,-x-x My vy, My 4, Myy T

T: My = My Moo,00, M10,4+0, Mo+t,0+5 My 00, Motr,—0 TandlL



sum rules for LbL scattering (ll)

ﬂ Unitarity: link to y" y* = X cross sections

Wixiagaine = Im Myrxs 5,5, Wit it + Wi i =2VX (00 +02) =2VX (0 +01) =4V X o1,
Wig ot = Wi - =2VX (00 — 02) = 4V X 77,

Y AN Wii__ = 2V X (o) —o1) = 2V X 777,
——— X Woo,00 = 2VXorr,

Y* AANAAAN W+0,+0 = 2\/§ OTL,

W0_|_,0_|_ = 2& orT,
Wiy 00+ Wos,—0 =4VX 71,
Wi t,00 — Woy,—0 = VX 7.

X =v"-QiQ3
ﬂ Experiment: e e” - e e* X cross sections
o- . o 2v X B3pl dpy
o = . .
Q % 1674 Q2 Q3 s(1 —4m2?2/s) E, E}
! < {4p7t p3t orr + pl° pY° ous 4208t pP oy + 2000 it
R 1/2

00 00

—— . pP0 +1) (b +1 .

T 1) (/)SFJr —1) (COSQ(b) TrT+8 (( 1; E: i) (cosgb) TTL

2

+2 (pi
Q22
efﬁ e* k)t (o5 +1) (o8 + 1] w4 [(o P =) (o0 i

lepton beam polarization , ¢ : kinematical quantities




sum rules for LbL scattering (lll)

micro- causallty

¢
:( ) Un Itaf'/t ) \X:‘S
y :

theory

imaginary part of the amplitude -
photon-photon fusion into leptons
and hadrons:

real part of the amplitude -
low-energy structure of the elastic
\/ LbL scattering:

@ £® = 1 (FuFH)? + Co(FinF)? )
| / \ Euler, Heisenberg (1936)
Iz N

(0.0)
1 d
= [02(5) - 00(5)] = 0 ata= | S 0]
S 8mJ S
S0 S0




sum rules for LbL scattering (1V)

3 superconvergent relations: '

helicity difference
sum rule

sum rules involving

/7
longitudinal photons \
S\

SRs involving LbL
low-energy constants:

J

Pascalutsa, Pauk, Vdh (2012)

. )
1

°7 f Ferap 0 a0

S0

v,

for Q2 = 0; GDH sum rule

Gerasimov, Moulin
(1975) ,
Brodsky, Schmidt

(1995)

~

S0

(O—Joods ! o)+ 0 +(S+Q%)Ta
T) o2 [T ;0 Tt

2_0
Q3 3

1
C1ECo = SHJ Sj Lo(s) £ 0.(5)]

S0

)

.

+ 6 new LECs at next order

ﬂ sum rules have been tested in perturbative QFT both at tree-level and 1-loop level



single meson production in yy collisions ()

- two-photon state: produced meson has C=+1
Y - both photons are real: J=1 final state is forbidden
FPC¢ (Landau-Yang theorem);
the main contribution comes from
J=0: 0* (pseudoscalar) and 0** (scalar)

and J=2: 2** (tensor)

- the SRs hold separately for channels of given intrinsic quantum numbers: isoscalar

and isovector mesons, cc states

- input for the absorptive part of the SRs: yy-hadrons response functions, can be expressed in
terms of yy—=>M transition form factors

[ L ..
o' "(s)~ (2) +1)16m ﬂ5(5 m meson contribution to the cross-section in the
- narrow-resonance approximation

2 J
o
( Cyy(P) = T m? |F pmy v+ (O, O)|2 two-photons decay rate for the meson




single meson production in yy collisions (ll)

‘1 the I=0 channel ’

‘ [ £ (02 - 00) C1 C2 )
[nb] [10~4GeV—4 [10~4GeV 4]
n -191+10 D 0 0.65 0.0
n’  |C=300%£10 D 0 50.33i0.o§
f0(980) | -19£5 0.020 %+ 0.005 0
f/(1370) | —914£36 | 0.049+0.019 0
f2(1270) | 449+52 [30.141+0.016) 0.141+0.016
f5(1525) 71 0.002+0.000 | 0.002+0.000
£2(1565) | 56+11 0.0124+0.002 | 0.012+0.002
Sum —89+66 D 0.22+0.03 1.14£0.04 |

dominant contribution to c; comes from n, n” and f,(1270)

dominant contribution to c; comes from f,(1270)

Pascalutsa,

Pauk, Vdh (2012)

('the 1=1 channel )

—_—
% (02 - 00) C1 2 w
[nb] [10=% GeV™4] [107% GeV—*]

0 <—195:I:13 j) 0 <io.94¢o.7@
a0(980) —20+ 8 0.021+0.007 0
a2(1320) |C 134+8 D 0.039+0.002 | 0.039+0.002
a>(1700) 18£3 | 0.003£0.001| 0.003+0.001

Sum |C -63+17 D 0.06+0.01 10.98+0.70 |,

dominant contribution to c; comes from 1°



single meson production in yy collisions (lll)

- one photon is virtual Qi?, second is quasi-real Q2%=0

pC _
o J - axial-vector mesons 1** are allowed

TFF
Y Q,° - f1(1285), f1(1420) transition FFs constrained from LEP (L3) data
{ ds 1_T7, 7L

mpmwy r'y'y 5_20”(5) fds [EQlOZ}Ql?:O de |: 0|+ 50102}(‘)[2=0
[MeV] [keV] [nb / GeV?] [nb / GeV?] [nb / GeV?|

f1(1285) | 1281.8+0.6 | 3.5+0.8 0 —93+21

f1(1420) | 1426.4+0.9 | 3.2+0.9 0 ~50+ 14

fo(980) | 980+10 | 0.29+£0.07 | 205 0

f/(1370) | 1200-1500 | 3.8+1.5 48 +19 0

f>(1270) | 1275.1£1.2 | 3.03+0.35 | 13816 >0

f2(1525) | 15255 | 0.08140.009 | 1.5%0.2 >0

f2(1565) | 1562+13 | 0.70£0.14 | 122 >0

Sum

q sum rules allow to constrain so
far unmeasured contributions,

e.g. 7y y - tensor mesons

1.0 |

T®©0%,0)/T%0,0)
S
Co

S
N

0.0 -

S
SN

S
~

using data for n, n’ FF

- - = = using data for f1(1285), f1(1420) FF
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=

sum rules for charmonium states (l)

y(4S) or hybrid

X(2P) 14(2P) o5 ]

X(3872)™ 57y ™y -

(pro, )y
Yo — /
TR

Xeo(1P) N

Charmonium
family

narrow states:
well
understood

cc



sum rules for charmonium states (ll)

o0
o9 — Opl(S
sum rules evaluated for 0= [ ds (o2 — 00](s)
- S
cc states 0 ¢
— — - N
mm L'y .f'E'(U2'_‘70)
[MeV] keV] (nb]
- 1.(15) 2983.6 & 1.2 5.06 + 0.53 —11.9+1.2
0+ Xeo(1P) 3414.75 £ 0.31 2.34 £ 0.27 —36+04
P+ Xe2(1P) 3556.20 =+ 0.09 0.53 & 0.06 3.6+ 0.4
Sum cc bound states —11.9+1.3
duality estimate
continuum (/s > 2mp) 149+1.0
cc bound states + continuum C 3.0+23 2
B J
O . ° OO OO 1
duallt.y es.t'lmate for continuum / o5 — 0] (7 > X) ~ / ds oy — ool (17 — €@
contribution, above DD threshold  / EA

interplay between hidden charm mesons (cc states) and
production of charmed mesons

Pauk, Pascalutsa, Vdh (2012)



sum rules for charmonium states (lll)

* 2
Y~ @ one photon virtual, o "o 1 +a -
TERE JP¢ one quasi-real 0 = / ds _g - 1L
. also axial vector S S Q1Q2 1Q2=qQ2=
Yo" a ,° states contribute S0 ¢
a — I )
" oy J ds [S%U” U %QTlTCSJQ%:o
[MeV] ke V] [nb / GeV?]
Xco(1P) 3414.75 4+ 0.31 2.34 +0.27 0.31 4+ 0.04
Xe2(LP) 3556.20 + 0.09 0.53 £ 0.06 >70.14 £ 0.02
Xe1 (1P) 3510.66 + 0.07 - (—145 £7) - (T /T)
duality estimate
continuum (/s > 2mp) —0.067 £+ 0.005
_J
: ) -
saturating sur.n r.ule by Xc1 (1P) F(A) = lim m_;l Lh (A s )
allows a prediction: Q-0 Q7 2

~

['yry (Xe1) = (221 0.4) keV Cowifsre I (f1(1285)) = (3.5 4+ 0.8) keV
L3 Coll.




Summary and outlook

new theoretical tools for y" y* > X

- sum rules, dispersive frameworks for transition FFs:
allow to include experimental constraints

- new evaluation of heavier meson contributions: a, = (6.6~4.4) +2.9x 101!

new dispersion relation frameworks for a,:
-> require close collaboration with experiment (spacelike, timelike, meson decays)

Outcome of Mainz workshop:
draft of roadmap for a data driven approach in HLbL

goal: realistic error estimate on a, / reduce to 2 x 101% (20 % of HLbL)



Pseudoscalar-exchange contribution to (g — 2),, from rational approximants — and connection to P — 20 decays —

Appendix

Section 1

Appendix




Pseudoscalar-exchange contribution to (g — 2),, from rational approximants — and connection to P — 24 decays —

Appendix

Padé Approximants: Convergence properties

Convergence known for meromorphic (large-N.) and Stieltjes (DR)

for the last limpy_s oo PﬁJrl(X) <f(x) < PH(X)

Fpy~(0)
— 2y  Pyy a
FP'y*’y(Q )_ Q2 1#’(1)(*2)
a
T
A ]
l‘| "' oY
st H - o
\ ’.' - o
/ - ReHQ
- —
I
= B 0 g
TAYLOR
H
!
H o
!
T l, 02
/
I’ —_— 03
/
!

- ow

1
— Logitx

(vOMEL) —pO(1)) —

Py

PO
PliQ?)
P

- PHQY
—  RegelQ’]




Pseudoscalar-exchange contribution to (g — 2),, from rational approximants — and connection to P — 24 decays —

Appendix

Padé Approximants: Convergence properties

Il. Stieljes functions: (1/x)/n(1+ x)

Re(iLog(1+x))

Wi
< BT
LRI T FITT
L7

o
D e a7 a9 5
SRR

2>
LSRR
SRS




Pseudoscalar-exchange contribution to (g — 2),, from rational approximants — and connection to P — 24 decays —

Appendix

Padé Approximants: Convergence properties

Il. Stieljes functions: (1/x)/n(1+ x)

L LAY
Re(flog(1+x))

Im(LLog(1 ¥ x))




Pseudoscalar-exchange contribution to (g — 2),, from rational approximants — and connection to P — 20 decays —

Appendix

Our proposal: Bivariate Padé Approximants

Lets revisit the Regge Model
FPWW*(Qle Q%) =

Obeys Py, (x,y) < f(x,y) < PN(x,y) (Stieltjes)



Pseudoscalar-exchange contribution to (g — 2),, from rational approximants — and connection to P

Appendix

Our proposal: Bivariate Padé Approximants

2 2
A bigger challenge: cuts Fp -« (QZ, Q3) = Fpy+ (0, 0)703,\12022 In (%21822)

AP AP

| b

& j3\
N

0 2 4 6 8 10

Obeys Py, (x,y) < f(x,y) < PN(x,y) (Stieltjes)



Appendix

Pseudoscalar-exchange contribution to (g — 2),, from rational approximants — and connection to P — 24 decays —

Dalitz decays: n — v//

n

IF,I?

This Work: Data

| | —— This Work: Fit (p0=1) (@)
o A2,2011

TL calculation

— — - Padé approxim.

I
0.2

I I
0.3

0.4 0.5
m(I'T) [GeV/c?]

Compare to A2 Coll. results in Mainz [Phys.Rev. C89 (2014) 044608]
The results are excellent — reasonable to use them in our fit

R. Escribano, P. Masjuan, P. Sanchez, In preparation



Pseudoscalar-exchange contribution to (g — 2),, from rational approximants — and connection to P — 24 decays —

Appendix

Dalitz decays: n — v//

PRrREVIOUS RESULTS

b, = 0.60(6)(3)(m,,)—2

cy = 0.37(10)(7)(m,,)—4

d, = —

Asymptotics = 0.160(24) GeV

Q%F,,(Q% [Gev]

UPDATED RESULTS

3 b, = 0.576(11)(1)(m,) 2

5 ¢, = 0.339(15)(2)(m,)~*

I d, = 0.200(14)(10)(m,)~5

s Asymptotics = 0.177(15) GeV

020 015 010 005 000
10 2. EJ 40,

Q@ [Gev?

R. Escribano, P. Masjuan, P. Sanchez, In preparation



Pseudoscalar-exchange contribution to (g — 2),, from rational approximants — and connection to P — 24 decays —

Appendix

Toy Model for P — ¢¢: Unitarity Analtiticity & Cuts

FPV*’Y*(q%’ q%) = FP’Y’Y*(q%) X FPW*(QS)
Fpyn(a%) = cppGyp(q®) + cpu Gu(G)cps Gs(a%)

Based on Dumm, Pich, Portoles PRD62 and Dumm, Roig, EPJC73

2 2
2 _ _SML mp 8mp 5 _ 3 o(s)-1
MP s+ 9672 F2 (In ( u? ) + s 3 U(S) In (o‘(s)+1
For narrow resonances

Mw,qS + Mw,g{)rw,qb Sth/Mw,qb
Mw@ — s+ Mw,¢rw7¢ (Sth — S)/Mw@




Pseudoscalar-exchange contribution to (g — 2),, from rational approximants — and connection to P — 24 decays —

Appendix

Toy Model for P — ¢¢: Unitarity Analtiticity & Cuts

Integration is easy through Cauchy’s integral Formula

1 [ Im [G(M?)]
2y _ 1 2
G(q)_w/st aM M2 — g2 — e

h

Then our loop integral can be solved through standard procedures

oo (oo}
A= %/ / dM;dM3Im [G(MZ)] Im [G(M3)] x
Sth Sth
1 1
d*k[... ,
X/Loop ey vy prgy v
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